Институт физики микроструктур РАН — филиал Федерального государственного бюджетного научного учреждения «Федеральный исследовательский центр Институт прикладной физики Российской академии наук»

УТВЕРЖДАЮ
Директор ИФМ РАН
3.Ф.Красильник
"9" аппеля 2018 г

Рабочая программа дисциплины

Физика поверхности

Направление подготовки
03.06.01 «Физика и астрономия»

Направленность (профиль) программы
01.04.01 «Приборы и методы экспериментальной физики»

Квалификация (степень) выпускника *исследователь - преподаватель, исследователь*

Форма обучения очная

Нижний Новгород 2018

1. Место дисциплины в структуре ООП аспирантуры

Дисциплина «Физика поверхности» является обязательной дисциплиной вариативной части программы 01.04.01 «Приборы и методы экспериментальной физики».

Для успешного усвоения курса аспиранту необходимо знание общих курсов физики и математики, квантовой механики, статистической физики, термодинамики и электродинамики. Данный курс является базой для выполнения аспирантами исследований в области твердотельных наноструктур и тонких пленок.

Дисциплина изучается на 1 курсе (1 семестр).

Целями освоения дисциплины являются:

- формирование у аспирантов современного представления об основных явлениях и эффектах, связанных с ограниченностью твердых тел;
- ознакомление аспирантов с основными теоретическими подходами для описания свойств поверхности твердого тела и интерфейсов;
- ознакомление аспирантов с основными экспериментальными методами для изучения электрофизических свойств поверхности твердых тел;
- формирование у аспирантов компетенций программы 01.04.01 «Приборы и методы экспериментальной физики», в соответствии с требованиями ФГОС ВО по направлению подготовки 03.06.01 «Физика и астрономия».

2. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы по направлению «Физика и астрономия»

В результате освоения дисциплины обучающийся должен овладеть следующими компетенциями результатами обучения по дисциплине:

Код	Результаты освоения ООП	Перечень результатов планируемых
компетенции	Содержание компетенций	обучения по дисциплине
УК-1	способность к критическому анализу	ЗНАТЬ:
	и оценке современных научных	методы критического анализа и
	достижений, генерированию новых	оценки современных научных
	идей при решении	достижений, а также методы
	исследовательских и практических	генерирования новых идей при
	задач, в том числе в	решении исследовательских и
	междисциплинарных областях	практических задач, в том числе
		междисциплинарных областях.
		УМЕТЬ:
		проводить анализ литературных
		данных в рамках поставленной
		исследовательской (практической,
		образовательной) задачи, выявлять
		основные вопросы и проблемы,
		существующие в современной
		науке;
		при решении исследовательских и
		практических задач генерировать
		новые идеи, поддающиеся
		операционализации исходя из
		наличных ресурсов и
		ограничений.

		рилисти.
		ВЛАДЕТЬ:
		навыками критического анализа и
		оценки современных научных
		достижений и результатов
		деятельности по решению
		исследовательских и практических
		задач, в том числе в
		междисциплинарных областях.
ОПК-1	способность самостоятельно	ЗНАТЬ:
	осуществлять научно-	теоретические основы организации
	исследовательскую деятельность в	научно-исследовательской
	соответствующей	деятельности;
	профессиональной области с	методы сбора информации для
	использованием современных	решения поставленных
	методов исследования и	исследовательских задач;
	информационно-коммуникационных	методы анализа данных,
	технологий	необходимых для проведения
		конкретного исследования.
		УМЕТЬ:
		выбирать и применять в
		профессиональной деятельности
		экспериментальные и расчетно-
		теоретические методы
		исследования
		планировать, организовывать и
		проводить научно-
		исследовательские и
		производственно- технические
		исследования с применением
		современной аппаратуры,
		оборудования и компьютерных
		технологий;
		самостоятельно выполнять
		теоретические,
		экспериментальные и
		вычислительные физические
		-
		исследования при решении
		научно-исследовательских и
		производственных задач с
		использованием современной
		аппаратуры и вычислительных
		средств.
		ВЛАДЕТЬ:
		навыками поиска (в том числе с
		использованием информационных
		систем и баз данных) и
		критического анализа информации
		по тематике проводимых
		исследований;
		навыками планирования научного
		исследования, анализа
		получаемых результатов и

		формуниорки выполов:
		формулировки выводов;
		навыками работы на современной
		аппаратуре и оборудовании для
		выполнения физических
		исследований;
		способностью самостоятельно с
		применением современных
		компьютерных технологий;
		анализировать, обобщать и
		систематизировать результаты
		физических работ.
TIIC 1		
ПК-1	способность самостоятельно	ЗНАТЬ:
	проводить научные исследования в	основные законы, теоретические
	области разработки приборов и	модели и современные методы
	методов экспериментальной физики	исследований и математического
	и применять полученные результаты	моделирования в области
	для решения практических задач	разработки приборов и методов
		экспериментальной физики.
		YMETЬ:
		использовать полученные знания
		для анализа результатов научных
		исследований и решения
		практических задач в области
		-
		разработки приборов и методов
		экспериментальной физики.
		ВЛАДЕТЬ:
		разработкой методов научного
		исследования для получения
		новых фундаментальных знаний в
		области разработки приборов и
		методов экспериментальной
		физики и способами применения
		этих знаний для создания
		прикладных технологий и
		решения практических задач.
ПК-2	способность к системному анализу	ЗНАТЬ:
11IX-2	современных проблем физики и	Базовые законы современной
	комплекса новейших знаний и	=
		физики и их взаимосвязь,
	достижений физики в своей научно-	тенденции развития физики в
	исследовательской деятельности	обозримой перспективе,
		основные проблемы, стоящие
		перед современной физикой, а
		также предлагаемые средства их
		решения.
		УМЕТЬ:
		понимать суть явлений и
		процессов, изучаемых физикой.
		ВЛАДЕТЬ:
		основами методологии и
		практическими навыками
		научного познания при изучении различных уровней организации

		материи, пространства и
		времени.
ПК-3	способность использовать	ЗНАТЬ:
	современные методы обработки	основные методы обработки
	экспериментальных данных и/или	данных, полученных
	методы численного моделирования	экспериментально или методами
	сложных физических процессов в	численного моделирования.
	области разработки приборов и	УМЕТЬ:
	методов экспериментальной физики.	выделять и систематизировать
		необходимые научные данные;
		критически оценивать их
		достоверность.
		ВЛАДЕТЬ:
		навыками сбора, обработки,
		анализа и систематизации научных
		данных;
		навыками статистического анализа
		экспериментальных данных;
		навыками аналитических и
		численных аппроксимаций
		функций.

3. Структура и содержание дисциплины

Общая трудоемкость (объем) дисциплины составляет 3 зачетных единиц (ЗЕ), 108 часов.

3.1. Объём дисциплины по видам учебных занятий (в часах)

Вид учебной работы	Всего часов
Общая трудоемкость дисциплины	108
Контактная работа обучающихся с преподавателем (по видам учебных занятий) (всего)	36
Аудиторная работа (всего):	36
в том числе:	
Лекции	18
Практические занятия	18
Самостоятельная работа обучающихся (всего)	72
Вид итогового контроля	Зачет

3.2. Разделы дисциплины и трудоемкость по видам учебных занятий (в академических часах)

No	Раздел дисциплины	Раздел дисциплины		Контактная работа	
		Всего	Лекционные	Практические	Самостоятельная работа
			занятия	занятия	раоота
1	Электродинамические	6	1	1	4
	аспекты поверхностных				
	явлений				
2	Основы двумерной	12	2	2	8

	кристаллографии				
3	Электронные свойства	24	4	4	16
	поверхности				
4	Экспериментальные	24	4	4	16
	методы исследования				
	поверхности				
5	Структура и электронные	12	2	2	8
	свойства чистых				
	поверхностей некоторых				
	кристаллов				
6	Адсорбция и элементарные	30	5	5	20
	процессы на поверхности				
	твердых тел				
	Дисциплина в целом	108	18	18	72

3.3 Содержание дисциплины, структурированное по темам (разделам)

No	Наименование раздела	Содержание
	дисциплины	1
1	Электродинамические аспекты поверхностных явлений	Уравнения Максвелла в веществе. Диэлектрическая проницаемость газа свободных электронов. Плазменная частота. Скин-эффект. Условие существования поверхностной электромагнитной волны на границе раздела металл — диэлектрик. Структура и дисперсионная характеристика поверхностного
2	Основы двумерной кристаллографии	плазмона — поляритона. Приложения. Трехмерные и двумерные кристаллические структуры. Вектора основных трансляций. Индексы Миллера атомных плоскостей кристалла. Индексы направлений. Низкоиндексные плоскости некоторых важных. Сингулярные и вицинальные поверхности. Обратная решетка и зона Бриллюэна. Матричная запись структуры поверхности. Запись Вуда. Примеры двумерных решеток (реконструированные поверхности, поверхности с адсорбатами, вигнеровские кристаллы, вихревые решетки). Структурные дефекты кристаллов.
3	Электронные свойства поверхности	Электронные волны в однородном неограниченном кристалле. Разрешённые и запрещённые зоны. Структура волновой функции на границе первой зоны Бриллюэна. Поверхностные электронные состояния в модели свободного электронного газа. Интерференция поверхностных электронных состояний вблизи дефектов и восстановление спектра поверхностных квазичастиц. Число разрешенных состояний в одномерной цепочке атомов. Заполнение состояний в цепочке двухвалентных и одновалентных атомов. Удвоение периода и структурный фазовый переход Пайерлса. Перестройка энергетического спектра и появление энергетической щели. Невозможность существования одномерных металлов при низких температурах. Волны зарядовой плотности.

Функционал свободной энергии сверхпроводника. Уравнения Гинзбурга—Ландау. Два характерных масштаба — длина когерентности и глубина проникновения магнитного поля. Эффект Мейсснера. Энергия границы раздела сверхпроводник — нормальный металл. Сверхпроводимость 1-го и 2-го рода. Зарождение сверхпроводимости в неограниченном кристалле. Верхнее критическое поле Hc2. Зарождение сверхпроводимости в полуограниченном кристалле с плоской поверхностью. Поверхностная (прикраевая) сверхпроводимость. Критическое поле поверхностной сверхпроводимости Hc3. Наноструктурированные сверхпроводники.

4 Экспериментальные методы исследования поверхности

Зачем нужен вакуум? Принципы работы насосов различных типов. Методы измерения уровня вакуума. Приготовление атомарно-чистых поверхностей. Техника напыления в вакууме.

Рассеяние электронов на неоднородном электрическом потенциале. Задача рассеяния в дифференциальной и интегральной формах. Борновское приближение. Рассеяние на изолированном атоме. Рассеяние на кристаллической структуре. Условия дифракции Лауэ в трехмерном, двухмерном и одномерном случаях. Построение Эвальда в трехмерном и двумерном случаях. Дифракция медленных электронов (ДМЭ): построение Эвальда, аппаратура для регистрации, типичные результаты. Сверхструктура и суперрефлексы. Примеры восстановления структуры поверхности по ДМЭизображению. Дифракция быстрых электронов (ДБЭ): построение Эвальда, аппаратура для регистрации, типичные результаты. Примеры восстановления структуры поверхности по ДБЭ-изображению. Искажения дифракционной картины из-за структурных дефектов поверхности. Фактор Дебая-Валлера. Линии Кикучи.

Туннельный эффект. Задача рассеяния и оценка туннельного тока для плоскослоистой структуры. Метод туннельного матричного элемента. Задача Терсоффа—Хаманна. Связь туннельной проводимости и локальной плотности электронных состояний. Основные компоненты и принцип работы сканирующего туннельного микроскопа. Артефакты туннельных изображений и методы их устранения. Сканирующая туннельная спектроскопия.

Спин-зависящее туннелирование и спин-поляризованная туннельная микроскопия. Атомно-силовая микроскопия и спектроскопия. Магнитно-силовая микроскопия и спектроскопия.

Фотоэлектрический эффект. Фотоэлектронная спектроскопия с угловым разрешением. Примеры восстановления зонной структуры кристалла по данным ARPES.

5	Структура и электронные свойства чистых поверхностей некоторых кристаллов	Примеры релаксированных и реконструированных поверхностей металлов. Поверхности с нормальной и латеральной релаксацией Al(110) и Fe(211), с квазигексагональной реконструкцией Pt(100), с реконструкцией типа missing-row Pt(110), с реконструкцией типа herring-bone Au(111). Примеры реконструированных поверхностей полупроводников. Поверхности графита C(0001) и графена. Поверхность Si(100): естественная структура 1×1, реконструкция 2×1 и с(4×2). Поверхность Si(111): естественная структура 1×1 и реконструкции 2×1 и 7×7. DAS-модель. Поверхность Ge(111): реконструкции 2×1, 2×2, c(2×4) и c(2×8). Поверхности GaAs(100) и GaAs(111).
		Примеры интерференции поверхностных квазичастиц на поверхности благородных металлов Au(111), Ag(111),
		Cu(111); топологических изоляторов Bi2Se3, кристаллов
		высокотемпературных сверхпроводников BiSrCaCuO.
6	Адсорбция и элементарные	Терминология: адсорбция, десорбция, физосорбция и
	процессы на поверхности	хемосорбция; поверхностная фаза; гомо- и
	твердых тел	гетероэпитаксия; покрытие. Примеры поверхностей с адсорбатами.
		Основные термодинамические потенциалы.
		Поверхностное натяжение. Равновесная форма
		кристаллов. Теорема Вульфа. Огранка кристаллов.
		Переход порядок – беспорядок.
		Каноническое распределение Гиббса. Решеточные
		модели типа Изинга. Статистическая сумма для
		двумерного решеточного газа в условиях заданной
		температуры и химического потенциала. Приближение
		среднего поля. Связь покрытия и химического
		потенциала. Условия равновесия двух фаз и область
		устойчивости. Правило Максвелла. Оценка покрытия для плотной и разреженной фаз. Спинодаль. Изотермы
		адсорбции Лэнгмюра и Хилла – де Бура. Смачивание.
		Краевой угол.
		Модель Френкеля – Конторовой формирования
		соизмеримых и несоизмеримых структур. Солитоны.
		Дислокации несоответствия. Псевдоморфный рост.
		Механизмы и стадии роста. Элементарные процессы на
		поверхности твердого тела. Основы теории нуклеации
		Беккера – Дёринга – Зельдовича – Френкеля.
		Независимый рост островков. Оствальдовское
		созревание, модель Лифшица-Слёзова. Коалесценция островков, модель Колмогорова.
		Сильно неравновесные системы и спинодальный распад.
		Поверхностная диффузия. Механизмы поверхностной
		диффузии. Методы исследования.

Текущий контроль успеваемости осуществляется в рамках занятий практического и семинарского типа, групповых и индивидуальных консультаций. Итоговый контроль осуществляется на зачете, в ходе которого оцениваются уровень теоретических знаний и

4. Образовательные технологии

При изучении дисциплины используются современные образовательные технологии. Предусматривается использование в учебном процессе активных и интерактивных форм проведения занятий (разбор конкретных ситуаций, тренинги по решению практических задач) в сочетании с внеаудиторной работой с целью формирования и развития профессиональных навыков обучающихся.

Контактная работа (работа во взаимодействии с преподавателем) по дисциплине проходит в форме лекций и практических занятий, а также в виде коллективных и индивидуальных консультаций. На занятиях лекционного типа используются мультимедийные средства поддержки образовательного процесса, часть занятий проводятся в виде лекций с проблемным изложением материала. На занятиях практического типа разбираются решения задач различной степени сложности, проводятся обсуждения рассматриваемых проблем в свете последних научных достижений в данной области. Аспиранты работают как индивидуально, так и коллективно.

Самостоятельная работа включает в себя выполнение домашних заданий, подготовку семинаров, а также теоретическую подготовку к занятиям по материалам лекций и рекомендованной литературе, приведенной в конце данной программы. Кроме того, аспиранты имеют возможность принимать участие в семинарах с представителями российских и зарубежных научных организаций, мастер-классах экспертов и специалистов в области современных задач физики поверхности.

5. Учебно-методическое обеспечение самостоятельной работы обучающихся

В курсе запланировано на самостоятельную работу аспирантов 72 часа (67 % общего объема). Самостоятельная работа аспирантов является одним из видов учебных занятий, выполняется по заданию преподавателя индивидуально и без его непосредственного участия. Самостоятельная работа аспиранта — неотъемлемая часть подготовки высококвалифицированного специалиста в соответствующей области. Ее цель — систематизация и закрепление полученных знаний и умений, углубление и расширение знаний, приобретение навыков самостоятельной работы с литературой, формирование способностей и навыков к непрерывному самообразованию и профессиональному совершенствованию.

Самостоятельная работа аспиранта подразумевает проработку лекционного и дополнительного материала, решение домашних задач с последующей проверкой навыков решения задач. Проработка лекционного материала осуществляется еженедельно после проведения аудиторных занятий в рамках часов, отведенных аспирантам на самостоятельную работу. Кроме того, работа с лекционным и дополнительным материалом (рекомендованной литературой, приведенной в конце данной программы) проводится при подготовке к зачету по дисциплине. Выполнение домашних работ осуществляется еженедельно или раз в две недели в соответствии с графиком изучения соответствующего лекционного материала и проведения практических занятий по соответствующей тематике.

6. Фонд оценочных средств по дисциплине

6.1 Типовые контрольные задания или иные материалы

- 1. Постройте плоскости (100), (110) и (111) для *простого кубического* кристалла. Для атомных плоскостей указанных типов вычислите расстояние между плоскостями и нарисуйте расположение атомов для первого и второго атомных слоев, отсчитывая номера слоев от поверхности.
- 2. Постройте плоскости (100), (110) и (111) для кристалла с *гранецентрированной кубической* решеткой. Для атомных плоскостей указанных типов вычислите расстояние между плоскостями и нарисуйте расположение атомов для первого и второго атомных слоев, отсчитывая номера слоев от поверхности.
- 3. Постройте плоскости (100), (110) и (111) для кристалла с *объемноцентрированной кубической* решеткой. Для атомных плоскостей указанных типов вычислите расстояние между плоскостями и нарисуйте расположение атомов для первого и второго атомных слоев, отсчитывая номера слоев от поверхности.
- 4. Постройте плоскости (100), (110) и (111) для кристалла с решеткой *типа алмаза*. Для атомных плоскостей указанных типов вычислите расстояние между плоскостями и нарисуйте расположение атомов для первого и второго атомных слоев, отсчитывая номера слоев от поверхности.
- 5. Для гексагональной двумерной решетки нарисуйте суперструктуры, соответствующие следующим матричным формам: $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $\begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$, $\begin{pmatrix} 2 & 0 \\ -1 & 1 \end{pmatrix}$, а также запишите эквивалентные выражения в записи Вуда.
- 6. Для квадратной двумерной решетки нарисуйте суперструктуры, соответствующие следующим матричным формам: $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $\begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$, $\begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$, а также запишите эквивалентные выражения в записи Вуда.
- 7. Покажите, что суперструктура $\sqrt{3} \times \sqrt{3} R30^\circ$ в матричной форме описывается как $\begin{pmatrix} 2 & 1 \\ -1 & 1 \end{pmatrix}$, если угол между векторами основных трансляций равен 120°.
- 8. Адсорбция Ni на поверхность Si(111), которая имеет гексагональную решетку, приводит образованию суперструктуры $\sqrt{7} \times \sqrt{7} R\varphi$. Определите значение угла φ и постройте двумерную решетку суперструктуры, наложенную на решетку 1×1 .
- 9. Покажите, что изменение толщины d(x) металлической плёнки, напыленной из проволочного источника, описывается соотношением

$$d(x) = \frac{d(0)}{1 + \left(\frac{x}{D}\right)^2},$$

где D — расстояние по нормали от источника к образцу, x — расстояние от нормали до выбранной точки поверхности образца.

- 10. Рассмотрите следующие двумерные суперструктуры: гексагональная сверхрешетка $2\sqrt{3} \times 2\sqrt{3} R30^{\circ}$, гексагональная сверхрешетка $\sqrt{7} \times \sqrt{7} R \pm 19.1^{\circ}$ и прямоугольная сверхрешетка 2×3 . Сколько симметричных доменов могут иметь такие суперструктуры? Схематически нарисуйте дифракционные картины медленных электронов для однодоменных и многодоменных поверхностей указанных видов.
- 11. Используя построение Эвальда, определите масштаб картины дифракции от поверхности с квадратной решеткой с периодом 3 А. Сколько дифракционных

рефлексов будет видно на картине ДМЭ при энергии 50 эВ в системе с 120° экраном?

- 12. Используя построение Эвальда, определите масштаб картины дифракции от поверхности с квадратной решеткой с периодом 3 А. Сколько дифракционных рефлексов будет видно на картине ДБЭ при энергии 10 кэВ в системе с углом падения 5° и расстоянием от образца до экрана 30 см и диаметром экрана 10 см?
- 13. Покажите, что волновые функции электронов с энергиями, близкими к энергии Ферми, вблизи плоской поверхности монокристаллического образца описываются выражением

$$\varphi(x,y,z) = \sum_{G} a_{G} \times e^{-z\sqrt{\tau^{2} + (\mathbf{k}_{\parallel} + G)^{2}}} \times e^{i(\mathbf{k}_{\parallel} + G)\mathbf{R}}$$

где G — вектор двумерной обратной решетки, \mathbf{R} — двумерный радиус-вектор, \mathbf{k}_{\parallel} — волновой вектор частицы вдоль поверхности, z>0.

- 14. Рассчитайте период осцилляций Фриделя для Au, который является благородным металлом и имеет г.ц.к. решетку с постоянной решетки 4.08 A, для энергий, близких к энергии Ферми.
- 15. Рассчитайте период осцилляций Фриделя для Na, который является щелочным металлом и имеет о.ц.к. решетку с постоянной решетки 4.23 A, для энергий, близких к энергии Ферми.
- 16. Атом Ag случайно мигрирует на поверхности $Si(111)\sqrt{3}\times\sqrt{3}$ -Ag. Оцените среднее смещение атома за 1 сек, 1 мин и 1 час при температуре 450 C, коэффициент диффузии D_0 = 10^{-3} см²/сек, E_{diff} = 0.33 эВ.
- 17. Частота скачков атома азота по поверхности Fe(100) составляет 10^{-3} 1/cek при температуре 300 K и 3×10^{-3} 1/cek при температуре 330 K. Оцените коэффициент диффузии и вычислите энергию активации, принимая по внимание, что Fe-0. ц.к. кристалл с постоянной решетки 2.87 A. Предположите, что частота колебаний равна 4×10^{12} 1/cek.

6.2. Описание шкал оценивания

Итоговый контроль качества усвоения аспирантами содержания дисциплины проводится в виде зачета, на котором определяется:

- уровень усвоения основного учебного материала по дисциплине;
- уровень понимания изученного материала;
- способности использовать полученные знания для решения конкретных задач.

Зачет проводится в устной форме. Устная часть заключается в ответе аспирантом на теоретические вопроса курса (с предварительной подготовкой) и последующем собеседовании в рамках тематики курса. Собеседование проводится в форме вопросов, на которые аспирант должен дать краткий ответ. Практическая часть предусматривает решение двух задач по различным разделам курса.

Зачет ставится при уровне знаний на оценку «удовлетворительно» и выше.

Оценка	Уровень подготовки
Отлично	Высокий уровень подготовки с незначительными ошибками. Аспирант дает полный и развернутый ответ на все
	теоретические вопросы билета; точно отвечает на
	дополнительные вопросы; приводит почти полные,
	аргументированные решения всех сформулированных в билете
	задач с незначительными недочетами. Изложение решений и
	полученные ответы отличаются логической
	последовательностью, четкостью в выражении мыслей и
	обоснованностью выводов, демонстрирующих знание
	общефизических и профессиональных дисциплин, умение
	применять на практике приобретенные навыки, владение ме-
	тодиками решения задач.
	Выполнение контрольных экзаменационных заданий на 90% и
	выше
Хорошо	В целом хорошая подготовка с заметными ошибками или
	недочетами. Аспирант дает полный ответ на все теоретические
	вопросы билета с небольшими неточностями, допускает
	ошибки при ответах на дополнительные вопросы; приводит
	почти полные решения всех сформулированных в билете задач
	с некоторыми недочетами; или исчерпывающее решение
	приведено только для одной из двух задач билета, а вторая
	задача решена со значительными погрешностями. Изложение
	решений и полученные ответы отличаются логической
	последовательностью, достаточной четкостью в выражении
	мыслей и не всегда полной обоснованностью выводов,
	демонстрирующих, в целом, знание общефизических и
	профессиональных дисциплин, умение применять на практике
	приобретенные навыки, владение основными методиками
	решения задач.
	Выполнение контрольных экзаменационных заданий от 70 до 90%.
Удовлетворительно	Минимально достаточный уровень подготовки. Аспирант
	показывает минимальный уровень теоретических знаний,
	допускает ошибки при ответах на дополнительные вопросы;
	приводит неполные, слабо аргументированные решения всех
	сформулированных в билете задач. Изложение решений и
	полученные ответы не отличаются стройной логической
	последовательностью, четкостью в выражении мыслей и
	обоснованностью выводов, что говорит о не достаточно
	полном понимании общефизических и профессиональных
	дисциплин, умении применять на практике лишь некоторые
	приобретенные навыки, владении не всеми изученными
	методиками решения задач.
	Выполнение контрольных экзаменационных заданий от 50 до 70%.
Неудовлетворительно	Подготовка недостаточная и требует дополнительного
- J	изучения материала. Аспирант дает ошибочные ответы, как на
	теоретические вопросы билета, так и на наводящие и
	дополнительные вопросы экзаменатора; приводит решения
	сформулированных в билете задач с грубыми недочетами, что
_	TTT TIMPOSALISE STATE SAME TO TP JOBINITI HOMO TOTALINI, HO

говорит о недостатке знаний по общефизическим и профессиональным дисциплинам, отсутствии умения применять на практике приобретенные навыки, не владение
методиками решения задач.
Выполнение контрольных экзаменационных заданий до 50%.

7. Перечень основной и дополнительной учебной литературы, необходимой для освоения лисциплины

а) основная литература:

- 1. Дубровский В.Г., Теория формирования эпитаксиальных наноструктур. М.: Физматлит, 2009 (Режим доступа: сайт Российского фонда фундаментальных исследований http://www.rfbr.ru/rffi/ru/books/o_72020).
- 2. Ландау Л.Д., Лифшиц Е.М., курс "Теоретическая физика", Том V. «Статистическая физика. Часть 1». М.: Физматлит 2010.
- 3. Лифшиц Е.М., Питаевский Л.П., курс "Теоретическая физика", Том X. «Физическая кинетика». М.: Физматлит 2007.
- 4. Киттель Ч., Квантовая теория твердых тел. М.: Мир, 1967.

б) дополнительная литература:

- 1. Успехи физических наук (https://ufn.ru/ru/).
- 2. Reviews of Modern Physics (RMP) (https://journals.aps.org/rmp/).
- 3. Surface Science (https://www.journals.elsevier.com/surface-science).
- 4. Physical Review B (PRB) (https://journals.aps.org/prb/)

в) факультативная литература

- 1. К. Оура, В.Г. Лифшиц, А.А. Саранин, А.В. Зотов, М. Катаяма, «Введение в физику поверхности». М.: Наука, 2006.
- 2. И.Ф. Люксютов, А.Г. Наумовец, В.Л. Покровский, «Двумерные кристаллы». Наукова Лумка, 1988.
- 3. Дж. Займан, «Модели беспорядка». М.: Мир, 1982
- 4. Ф.Ф. Волькенштейн, «Физико-химия поверхности полупроводников». М.: Наука, 1973.
- 5. А.Г. Хачатурян, «Теория фазовых превращений и структура твердых растворов». М.: Наука, 1974.

8. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине

Использование программного обеспечения:

- 1. Microsoft Office Word.
- 2. Microsoft Office Excel.
- 3. Microsoft Office Power Point.
- 4. Free Origin Viewer.

9. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

Для проведения лекций и практических занятий требуется типовое оборудование лекционной аудитории.

Для подготовки самостоятельных контрольных работ и для их графического представления (если это необходимо), а также для расширения коммуникационных возможностей аспиранты имеют возможность работать за компьютером с соответствующим лицензионным программным обеспечением и выходом в Интернет.

Составитель:

Аладышкин А.Ю., к.ф.-м.н., с.н.с. отдела физики сверхпроводников ИФМ РАН

Рецензент:

Новиков А.В., к.ф.-м.н., зав. лабораторией молекулярно-пучковой эпитаксии кремний-германиевых структур отдела физики полупроводников ИФМ РАН