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We represent sixteen-component values “sedeons,” generating associative noncommu-
tative space–time algebra. We demonstrate a generalization of relativistic quantum
mechanics using sedeonic wave functions and sedeonic space–time operators. It is shown
that the sedeonic second-order equation for the sedeonic wave function, obtained from
the Einstein relation for energy and momentum, describes particles with spin 1/2. We

showed that the sedeonic second-order wave equation can be reformulated in the form
of the system of the first-order Maxwell-like equations for the massive fields. We pro-
posed the sedeonic first-order equations analogous to the Dirac equation, which differ
in space–time properties and describe several types of massive and massless particles.
In particular we proposed four different equations, which could describe four types of
neutrinos.
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1. Introduction

It is known that scalar Schrödinger and Klein–Gordon equations for scalar wave

function do not describe spin properties of quantum particles.1,2 For the spin

description W. Pauli and P. A. M. Dirac proposed matrix equations for the

multicomponent spinor wave functions.3,4 In the latter years many authors con-

sidered alternative possibilities to describe quantum particles by multicomponent

wave functions on the basis of various systems of hypercomplex numbers.5–23 The

simplest generalizations of quantum mechanics based on quaternionic wave func-

tions with spatial structure enclosing scalar and vector components were made

in Refs. 5–11. However the essential imperfection of the quaternionic algebra is

that the quaternions do not include pseudoscalar and pseudovector components.

The consideration of total symmetry with respect to spatial inversion leads us

to the eight-component wave functions enclosing scalar, pseudoscalar, vector and
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pseudovector components. However attempts to describe relativistic particles by

means of different eight-component hypernumbers such as biquaternions,4–15 octo-

nions16–20 and multivectors generating associative Clifford algebras21–23 have not

made appreciable progress. In particularly, the few attempts to describe relativistic

particles by means of octonion wave functions are confronted by difficulties con-

nected with octonions nonassociativity.18 Moreover all systems of hypercomplex

numbers, which have been applied up to now for the generalization of quan-

tum mechanics (quaternions, biquaternions, octonions and multivectors) are the

objects of hypercomplex space and do not have any consistent space-geometric inter-

pretation. Recently we proposed eight-component values “octons”24–26 generating

a closed noncommutative associative algebra and having a clear well-defined

geometric interpretation. It was shown that equations of relativistic quantum

mechanics can be adequately generalized on the basis of octonic wave functions and

octonic spatial operators. However all the above-mentioned eight-component wave

functions do not describe the properties of quantum particles concerned with time

transformation. The consideration of total space–time symmetry requires sixteen-

component wave functions.

There are some publications describing the attempts to develop quantum

mechanics using different sixteen-component hypernumbers. In particular, one of

approaches is the application of hypernumbers sedenions, which are obtained from

octonions by Cayley–Dickson extension procedure.27–30 But as in the case of octo-

nions the essential imperfection of sedenions is their nonassociativity. Another

approach is the description of quantum particles by hypercomplex multivectors

generating associative space–time Clifford algebras. The basic idea of such multi-

vectors is an introduction of additional noncommutative time unit, which is ortho-

gonal to the space units.31,32 However the application of such multivectors in

quantum mechanics is considered in general as one of abstract algebraic scheme

which enables the reformulation of Dirac equation in terms of nonspinor wave func-

tions but does not touch the physical entity of this equation.

In this paper we represent sixteen-component values “sedeons,” which are the

generalization of the proposed previously “octons” and generate associative non-

commutative space–time algebra. On the basis of sedeonic wave functions and

sedeonic space–time operators the generalized equations of relativistic quantum

mechanics are formulated. We show that sedeonic second-order and first-order equa-

tions differing in space–time properties enable the consideration of several types of

massive and massless fields.

2. Algebra of Sedeons

Let us consider four groups of values, which are differed with respect to spatial and

time inversion.

(1) Absolute scalars (A0) and absolute vectors ( ~A ) are not transformed under

spatial and time inversion.
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(2) Space scalars (B0r) and space vectors (~Br) are changed (in sign) under spatial

inversion and are not transformed under time inversion.

(3) Time scalars (C0t) and time vectors (~C t) are changed under time inversion and

are not transformed under spatial inversion.

(4) Space–time scalars (D0rt) and space–time vectors (~Drt) are changed under

spatial and time inversion.

Here indexes r and t indicate the transformations (r for spatial inversion and t

for time inversion), which change the corresponding values. Let us formally define

the operation of spatial inversion and time inversion, which are realized by the

operators Îr and Ît. These operators change the sign of corresponding values:

Îr : A0, ~A, B0r, ~Br, C0t, ~Ct, D0rt, ~Drt

⇒ A0, ~A, −B0r, −~Br, C0t, ~C t, −D0rt, −~Drt ;

Ît : A0, ~A, B0r, ~Br, C0t, ~Ct, D0rt, ~Drt

⇒ A0, ~A, B0r, ~Br, −C0t, −~C t, −D0rt, −~Drt .

All introduced values can be integrated into one space–time object. For this

purpose we propose the special sixteen-component values, which will be named

“sedeons” (in contrast to sedenions).

The sixteen-component sedeon W̃ is defined by the following expression:

W̃ = A0 + ~A + B0r + ~Br + C0t + ~Ct + D0rt + ~Drt . (1)

The sedeon (1) can be written also in the expanded form

W̃ = A0e + A1a1 + A2a2 + A3a3 + B0er + B1a1r + B2a2r + B3a3r + C0et

+ C1a1t + C2a2t + C3a3t + D0ert + D1a1rt + D2a2rt + D3a3rt , (2)

where values a1, a2 and a3 are absolute unit vectors; a1r, a2r and a3r are space unit

vectors; a1t, a2t and a3t are time unit vectors; a1rt, a2rt and a3rt are space–time

unit vectors; e is absolute scalar unit (e ≡ 1); er is space scalar unit; et is time

scalar unit; ert is space–time scalar unit. Let a1, a2, a3; a1r, a2r, a3r; a1t, a2t, a3t

and a1rt, a2rt, a3rt be the right Cartesian bases and corresponding unit vectors are

parallel to each other. The sedeonic components As, Bs, Cs, Ds (s = 0, 1, 2, 3) are

numbers (complex in general). The values

1, a1, a2, a3, er, a1r, a2r, a3r, et, a1t, a2t, a3t, ert, a1rt, a2rt, a3rt (3)

are the space–time basis of sedeon. The rules of multiplication of basis elements (3)

are formulated taking into account the symmetry of their products with respect to

the operations of spatial and time inversion.

The squares of sedeonic scalar units and unit vectors are positively defined and

equal to 1:

a2
j = e2

r
= a2

jr = e2
t

= a2
jt = e2

rt
= a2

jrt = 1 (j = 1, 2, 3) . (4)
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Table 1.

a1 a2 a3

a1 1 ia3 −ia2

a2 −ia3 1 ia1

a3 ia2 −ia1 1

Table 2.

er et ert

er 1 ert e

et ert 1 er

ert et er 1

The units er, et, ert commute with each other and with all sedeonic unit vectors.

All unit vectors can be expressed through the absolute vectors:

ajr = eraj , ajt = etaj , ajrt = ertaj . (5)

The absolute unit vectors anticommute with each other:

akaj = −ajak (k 6= j , k = 1, 2, 3) . (6)

The commutation rules for the rest unit vectors are the same and follow directly

from relations (5).

The rules of multiplication are constructed taking into account (4)–(6). For

example, the multiplication rules for the absolute unit vectors are

a1a2 = ia3 , a2a3 = ia1 , a3a1 = ia2 ,

where the value i is the imaginary unit (i2 = −1). All multiplication and commuta-

tion rules can be represented by means of two simple tables describing multiplication

of absolute unit vectors a1, a2, a3 and sedeonic units er, et, ert (see Tables 1 and 2).

We would like to emphasize especially that sedeonic algebra is associative. The

property of associativity follows directly from multiplication rules.

Thus the sedeon W̃ is the complicated space–time object consisting of absolute

scalar, space scalar, time scalar, space–time scalar, absolute vector, space vector,

time vector and space–time vector. Note that 1, a1, a2, a3 is distinguish sedeonic

basis since the corresponding components of sedeon are not transformed under spa-

tial and time inversion. Taking into account the relations between different elements

of sedeonic basis the sedeon can be represented in the compact form. Introducing

the designations of sedeon-scalars

W0 = A0 + B0er + C0et + D0ert , (7)

W1 = A1 + B1er + C1et + D1ert , (8)

W2 = A2 + B2er + C2et + D2ert , (9)

W3 = A3 + B3er + C3et + D3ert , (10)
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we can write the sedeon (2) as

W̃ = W0 + W1a1 + W2a2 + W3a3

or, introducing the sedeon-vector

~W = W1a1 + W2a2 + W3a3 ,

we can represent the sedeon in a very compact form

W̃ = W0 + ~W .

Further we will indicate sedeon-scalars and sedeon-vectors with the bold capital

letters.

Let us consider the rules of sedeonic multiplication in detail. In correspondence

with rules of multiplication for sedeon basis elements the sedeonic product of two

sedeons can be represented in the following form:

W̃1W̃2 = (W10 + ~W1)(W20 + ~W2)

= W10W20 + W10
~W2 + W20

~W1

+ ( ~W1 · ~W2) + [ ~W1 × ~W2] . (11)

Here we denoted the sedeonic scalar multiplication of two sedeon-vectors (inter-

nal product) by symbol “·” and round brackets

( ~W1 · ~W2) = W11W21 + W12W22 + W13W23 , (12)

and sedeonic vector multiplication (external product) by symbol “×” and square

brackets,

[ ~W1 × ~W2] = i(W12W23 −W13W22)a1 + i(W13W21 −W11W23)a2

+ i(W11W22 −W12W21)a3 . (13)

In (11)–(13) the component multiplication is performed in accordance with (7)–(10)

and Table 2. Thus the sedeonic product

F̃ = W̃1W̃2 = F0 + ~F

has the following components:

F0 = W10W20 + W11W21 + W12W22 + W13W23 ,

F1 = W10W21 + W20W11 + iW12W23 − iW13W22 ,

F2 = W10W22 + W20W12 + iW13W21 − iW11W23 ,

F3 = W10W23 + W20W13 + iW11W22 − iW12W21 .

Let us also introduce the operators of space and time sedeonic conjugation

(R̂r and R̂t respectively). For numerical sedeons these operators coincide with the

operators of spatial and time inversion (Îr and Ît). However for coordinate- and
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time-dependent sedeonic fields the operators R̂r and R̂t change the sign of corre-

sponding components, but do not act on coordinates and time. The operator R̂r

changes the sign of space and space–time components of the sedeonic field Ws(~r, t)

(s = 0, 1, 2, 3; see (7)–(10)):

R̂rWs(~r, t) = As(~r, t) − Bs(~r, t)er + Cs(~r, t)et − Ds(~r, t)ert , R̂2
r = 1 . (14)

The operator R̂t changes the sign of time and space–time components of the

sedeonic field:

R̂tWs(~r, t) = As(~r, t) + Bs(~r, t)er − Cs(~r, t)et − Ds(~r, t)ert , R̂2
t = 1 . (15)

Also we can introduce the operator of space–time conjugation

R̂rt = R̂rR̂t ,

which has the following property:

R̂rtWs(~r, t) = As(~r, t) − Bs(~r, t)er − Cs(~r, t)et + Ds(~r, t)ert , R̂2
rt = 1 . (16)

In the next sections we apply the sedeonic algebra to the generalization of

relativistic quantum mechanics.

3. Sedeonic Second-Order Equations

Previously we proposed the octonic relativistic second-order equation25 describing

particles with spin 1/2. In addition the sedeon’s algebra takes into account trans-

formational properties of values with respect to time inversion. In this section by

analogy with Ref. 25 we propose generalized sedeonic second-order equation and

consider its space–time properties.

Let us consider the wave function of a relativistic particle in the form of a

sixteen-component sedeon

W̃(~r, t) = W0(~r, t) + W1(~r, t)a1 + W2(~r, t)a2 + W3(~r, t)a3 (17)

with components

Ws(~r, t) = As(~r, t) + Bs(~r, t)er + Cs(~r, t)et + Ds(~r, t)ert . (18)

The components As(~r, t), Bs(~r, t), Cs(~r, t) and Ds(~r, t) are scalar (complex in

general) functions of spatial coordinates and time (s = 0, 1, 2, 3).

The wave function of a free particle should satisfy an equation, which is obtained

from the Einstein relation between particle energy and momentum,

E2 − c2~p2 = m2c4 , (19)

by means of changing classical momentum ~p and energy E on corresponding

quantum-mechanical operators. In sedeonic algebra the quadratic form (19) can

be represented in the following generalized form:

(E − αc~p)(E + αc~p) = m2c4 , (20)
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where α takes any meaning from the set {1,±er,±et,±ert}. This equation enables

introduction of several sedeonic wave equations differing in space–time properties.

Further we consider various opportunities for the description of quantum systems

on the base of different sedeonic space–time operators α̂.

Let us consider the operators of energy and momentum

Ê = i~
∂

∂t
and ~̂p = −i~~∇ ,

where the gradient vector has the form

~∇ =
∂

∂x
a1 +

∂

∂y
a2 +

∂

∂z
a3 .

Then we can formally write the generalized sedeonic wave equation obtained

from (20) in the form

(

1

c

∂

∂t
− α̂ ~∇

)(

1

c

∂

∂t
+ α̂ ~∇

)

W̃ = −
m2c2

~2
W̃ , (21)

where c is the velocity of light, m is the mass of the particle and ~ is the Planck con-

stant. Here the operator α̂ can take any meaning from (α̂ ∈ {1,±êr,±êt,±êrt}).

We also assume that the sedeonic wave function W̃ is twice continuously differen-

tiable, so [~∇ × ~∇]W̃ = 0. Equation (21) can be written in the following expanded

operator form:

{

1

c

∂

∂t
− α̂

(

∂

∂x
â1 +

∂

∂y
â2 +

∂

∂z
â3

)}

×

{

1

c

∂

∂t
+ α̂

(

∂

∂x
â1 +

∂

∂y
â2 +

∂

∂z
â3

)}

W̃(~r, t) = −
m2c2

~2
W̃(~r, t) , (22)

where the space–time operators â1, â2, â3 and α̂ in the left part of Eq. (22) trans-

form the space–time structure of the wave function by means of sedeonic multipli-

cation. For example, the action of the â3 operator can be represented as sedeonic

multiplication of unit vector a3 and sedeon W̃:

â3W̃ = a3W̃ = W3 − iW2a1 + iW1a2 + W0a3 .

Further we will use symbolic designations â1, â2, â3, êr, êt, êrt in the operator part

of equations but a1, a2, a3, er, et and ert designations in the wave functions. The

rules of multiplication and commutation for space–time operators are analogues to

the rules for corresponding elements of sedeonic basis.

To describe a particle in an external electromagnetic field the following change

of quantum-mechanical operators should be made:2

Ê → Ê − eΦ , ~̂p → ~̂p −
e

c
~A , (23)
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where Φ is absolute scalar potential, ~A = A1a1 + A2a2 + A3a3 is absolute vector

potential of the electromagnetic field, e is the particle charge (e < 0 for the electron).

The change (23) is equivalent to the following change of differential operators:

∂

∂t
→

∂

∂t
+

ie

~
Φ , ~∇ → ~∇−

ie

~c
~A . (24)

Using substitution (24) we can write Eq. (21) as

(

1

c

∂

∂t
+

ie

~c
Φ − α̂ ~∇ +

ie

~c
α̂ ~A

)(

1

c

∂

∂t
+

ie

~c
Φ + α̂ ~∇−

ie

~c
α̂ ~A

)

W̃ = −
m2c2

~2
W̃ .

(25)

The multiplication of sedeonic operators in the left part of (25) leads us to the

following equation:

[

1

c2

∂2

∂t2
− ∆ +

2ie

~c

(

( ~A · ~∇) +
Φ

c

∂

∂t

)

+
m2c2

~2
+

e2

~2c2
(A2 − Φ2)

]

W̃

−
e

~c
~HW̃ +

ie

~c
α̂~EW̃ = 0 . (26)

Here we have taken into account that ~E = −~∇Φ − 1
c

∂ ~A
∂t

is absolute vector of the

electric field, ~H = −i[~∇ × ~A ] is absolute vector of the magnetic field. (~∇ · ~A ) +
1
c

∂Φ
∂t

= 0 is the condition of the Lorentz gauge. Note that the sedeonic equation (26)

encloses the specific terms e
~c

~HW̃ and ie
~c

α̂~EW̃, where the fields ~E and ~H play

the role of spatial sedeonic operators. It is seen that in the presence of electric field

the second-order equation (26) essentially depends on the space–time properties of

operator α̂.

For a relativistic particle in an external homogeneous magnetic field directed

along the Z axis

~H = Ba3

the energy spectrum obtained from the solution to Eq. (26) is defined by the eigen-

value λ of the spatial operator a3 (λ = ±1) and has the form (the detailed derivation

see in Ref. 25)

E2
n,λ = m2c4 + p2

zc
2 + |e|B~c(2n + 1) − λeB~c . (27)

This set of energies is absolutely identical to the energy spectrum obtained from the

relativistic second-order equation following from the Dirac equation.2 The expres-

sion (27) allows one to state that eigenvalue λ of operator â3 has the sense of spin

projection and the second-order equation (26) correctly describes the interaction

between spin 1/2 and the electromagnetic field.

If the wave function is the eigenfunction of the operator â3, then some general

statements about the spatial structure of the wave function can be made. In the
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stationary state with energy E the wave function can be represented in the following

form:

W̃λ(~r, t) =
{

F
(λ)
1 (~r)(1 + λa3) + F

(λ)
2 (~r)(a1 + iλa2)

}

e−iωt , (28)

where ω = E/~, F
(λ)
1 (~r) and F

(λ)
2 (~r) are arbitrary sedeon-scalar functions. The

wave function (28) is the space–time object, which we name sedeonic oscillator.

The real and imaginary parts of the component (1+λa3)e
−iωt are a combination of

an absolute vector directed parallel to the Z axis and an absolute scalar oscillating

with the frequency ω. Here the phase difference between oscillations of scalar and

vector parts equals 0 in case of λ = 1 or π in case of λ = −1. The real and imaginary

parts of the component (a1 +λia2)e
−iωt have the form of absolute vectors rotating

in the plane perpendicular to the Z axis also with the frequency ω. The direction of

the rotation depends on the sign of λ. When λ = +1 a vector of angular velocity is

directed along the Z axis but when λ = −1 this vector has the opposite direction.

The transformational properties of the wave function (30) are defined by sedeon-

scalar functions F
(λ)
1 (~r) and F

(λ)
2 (~r).

4. Sedeonic Maxwell-like Equations for Massive Fields with

Spin 1/2

On the basis of sedeonic wave functions we can define fields, which satisfy the

first-order equations analogous to the Maxwell equations in electrodynamics.

From definitions (14)–(16) it is easy to see that the operator R̂r anticommutes

with êr, êrt operators and commutes with êt, â1, â2, â3, the operator R̂t anti-

commutes with êt, êrt and commutes with êr, â1, â2, â3, and the operator R̂rt

anticommutes with êr, êt and commutes with êrt, â1, â2, â3. Moreover operators

R̂r, R̂t and R̂rt commute with each other.

Let us introduce the generalized operator of conjugation ρ̂, which takes the

meaning from (ρ̂ ∈ {±R̂r,±R̂t,±R̂rt}). We also impose an additional important

condition. Further we will consider the operator α̂, which takes the meaning only

from the set {±êr,±êt,±êrt} and suppose that the operators α̂ and ρ̂ anticom-

mute with each other in any expression, i.e. these operators satisfy the following

condition:

α̂ρ̂W̃ = −ρ̂α̂W̃ .

For example, if we choose α̂ = êr, then ρ̂ = R̂r or ρ̂ = R̂rt, etc. Then using opera-

tors α̂ and ρ̂ we can write generalized second-order equation (21) in the following

operator form:

(

1

c

∂

∂t
− α̂ ~∇− i

mc

~
ρ̂

)(

1

c

∂

∂t
+ α̂ ~∇ + i

mc

~
ρ̂

)

W̃ = 0 . (29)
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Let us consider the sequential action of operators in (29). After the action of the

first operator we obtain

(

1

c

∂

∂t
+ α̂ ~∇ + i

mc

~
ρ̂

)

W̃ =
1

c

∂W0

∂t
+

1

c

∂ ~W

∂t
+ α̂~∇W0 + α̂(~∇ · ~W)

+ α̂[~∇× ~W] + i
mc

~
ρ̂W0 + i

mc

~
ρ̂ ~W . (30)

Let us introduce the complex fields:

G0 =
1

c

∂W0

∂t
+ α̂(~∇ · ~W) + i

mc

~
ρ̂W0 ,

~G = −α̂ ~∇W0 −
1

c

∂ ~W

∂t
− i

mc

~
ρ̂ ~W − α̂[~∇ × ~W] .

Here G0 is a sedeon-scalar field and ~G is sedeon-vector field. Using field’s definition

the expression (30) can be rewritten in the form

(

1

c

∂

∂t
+ α̂~∇ + i

mc

~
ρ̂

)

W̃ = G0 − ~G . (31)

Then Eq. (29) can be rewritten as

(

1

c

∂

∂t
− α̂ ~∇− i

mc

~
ρ̂

)

(G0 − ~G) = 0 .

Performing sedeonic multiplication and separating sedeon-scalar and sedeon-vector

parts we obtain the system of the first-order equations for field’s intensities:

(α̂ ~∇ · ~G) = −
1

c

∂G0

∂t
+ i

mc

~
ρ̂G0 ,

[α̂ ~∇ × ~G] =
1

c

∂ ~G

∂t
+ α̂ ~∇G0 − i

mc

~
ρ̂ ~G .

(32)

This system is absolutely equivalent to Eq. (29).

Equations (29) and (32) include the Maxwell equations for electromagnetic field

in a vacuum as the special case. Indeed let us take the mass equal to zero and

choose the wave function in the form of incomplete sedeon

W̃ = Φ + α ~A ,

where Φ is the absolute scalar potential, ~A is absolute vector potential and α is

undefined constant (α ∈ {er, et, ert}) describing transformational properties of the

vector potential. Then the generalized sedeonic equation of electrodynamics can be

written in the following compact form:
(

1

c

∂

∂t
− α̂ ~∇

)

(

1

c

∂

∂t
+ α̂ ~∇

)

(Φ + α ~A ) = 0 . (33)



January 7, 2010 9:21 WSPC/139-IJMPA 04773

Sedeonic Generalization of Relativistic Quantum Mechanics 6247

Applying the operator in Eq. (33) to the sedeon of electromagnetic potentials, we get
(

1

c

∂

∂t
+ α̂ ~∇

)

(Φ + α ~A ) =
1

c

∂Φ

∂t
+ α̂ ~∇Φ + α

1

c

∂ ~A

∂t

+ (α̂ ~∇ · α ~A ) + [α̂ ~∇ × α ~A ] . (34)

For correct definition of electric and magnetic field we should require that α and

α̂ have the same space–time properties, so α̂ = α in this expression. Then electric

and magnetic fields are defined in standard sedeonic form

~E = −
1

c

∂ ~A

∂t
− ~∇Φ , ~H = −i[~∇× ~A ] .

Using the Lorentz gauge

1

c

∂Φ

∂t
+ (~∇ · ~A ) = 0 ,

we can rewrite the expression (34) in the following form:
(

1

c

∂

∂t
+ α̂ ~∇

)

(Φ + α ~A ) = i ~H − α~E .

Then sedeonic equation (33) can be written as
(

1

c

∂

∂t
− α̂ ~∇

)

(i ~H − α~E) = 0 . (35)

Applying the operator in the left part of Eq. (35) to the sedeon of the electromag-

netic field we get

i
1

c

∂ ~H

∂t
− i(α̂ ~∇ · ~H) − i[α̂~∇× ~H ] − α

1

c

∂ ~E

∂t
+ (α̂ ~∇ · α~E) + [α̂ ~∇ × α~E ] = 0 .

(36)

Separating values of different types in (36) we obtain the system of Maxwell equa-

tions in sedeonic form

(α̂ ~∇ · α~E) = 0 , [α̂ ~∇ × α~E ] = −
i

c

∂ ~H

∂t
,

(α̂ ~∇ · ~H) = 0 , [α̂ ~∇× ~H ] =
i

c

∂α~E

∂t
.

(37)

Since α̂ = α the system (37) can be transformed to the following form:

(~∇ · ~E) = 0 , [~∇× ~E ] = −
i

c

∂ ~H

∂t
,

(~∇ · ~H) = 0 , [~∇× ~H ] =
i

c

∂ ~E

∂t
.

(38)

Thus the system of Maxwell equations for the electromagnetic field in a vacuum

can be formulated in terms of absolute values.
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The field equations (32) can be generalized for the case of a particle in an

external electromagnetic field. Using substitution (24) we can write Eq. (29) in the

following operator form:
(

1

c

∂

∂t
+

ie

~c
Φ − α̂ ~∇ +

ie

~c
α̂ ~A − i

mc

~
ρ̂

)

×

(

1

c

∂

∂t
+

ie

~c
Φ + α̂ ~∇ −

ie

~c
α̂ ~A + i

mc

~
ρ̂

)

W̃ = 0 . (39)

This equation enables the introduction of sedeon-scalar G0 and sedeon-vector
~G fields

(

1

c

∂

∂t
+

ie

~c
Φ + α̂~∇−

ie

~c
α̂ ~A + i

mc

~
ρ̂

)

W̃ = G0 − ~G , (40)

or in expanded form

G0 =
1

c

∂W0

∂t
+ α̂(~∇ · ~W) + i

mc

~
ρ̂W0 +

ie

~c
ΦW0 −

ie

~c
α̂( ~A · ~W) ,

~G = −α̂ ~∇W0 −
1

c

∂ ~W

∂t
− i

mc

~
ρ̂ ~W − α̂[~∇× ~W]

−
ie

~c
Φ ~W +

ie

~c
α̂ ~AW0 +

ie

~c
α̂[ ~A × ~W] .

Then using the field’s definition we can write Eq. (39) as
(

1

c

∂

∂t
+

ie

~c
Φ − α̂ ~∇ +

ie

~c
α̂ ~A − i

mc

~
ρ̂

)

(G0 − ~G) = 0 .

This equation leads us to the following Maxwell-like first-order sedeonic equations

for massive fields:

(α̂ ~∇ · ~G) = −
1

c

∂G0

∂t
−

ie

~c
ΦG0 +

ie

~c
α̂( ~A · ~G) + i

mc

~
ρ̂G0 ,

[α̂~∇× ~G] =
1

c

∂ ~G

∂t
+ α̂~∇G0 +

ie

~c
Φ~G −

ie

~c
α̂ ~AG0

+
ie

~c
α̂[ ~A × ~G] − i

mc

~
ρ̂ ~G .

(41)

5. Sedeonic First-Order Equations

As it was shown is Sec. 3 the spin interaction of a particle with external electro-

magnetic field can be described by the sedonic second-order equation. At that in

contrast to the Dirac theory the terms describing the interaction of spin 1/2 with

electric and magnetic fields are appeared in the sedeonic second-order equation as a

result of sedeonic multiplication without attraction of the first-order equation. How-

ever, in sedeonic quantum mechanics we can also construct the Dirac-like first-order

equations.
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In this section we show that there is the special class of sedeonic wave functions,

which describe particles with spin 1/2 but satisfy the first-order equations (analo-

gous to the Dirac equation) differing in space–time transformational properties.

Let us turn to the sedeonic equation (21)
(

1

c

∂

∂t
− α̂ ~∇

)(

1

c

∂

∂t
+ α̂~∇

)

W̃ = −
m2c2

~2
W̃ (42)

corresponding to the Einstein relation for energy and momentum. In this equation

we can formally denote the result of action of one operator on function W̃ as some

new sedeonic function Ṽ:
(

1

c

∂

∂t
+ α̂ ~∇

)

W̃ = −
mc

~
Ṽ .

Then the second-order equation (42) is equivalent to the system of two first-

order equations:
(

1

c

∂

∂t
+ α̂ ~∇

)

W̃ = −
mc

~
Ṽ ,

(

1

c

∂

∂t
− α̂ ~∇

)

Ṽ =
mc

~
W̃ .

(43)

Acting on the second equation of (43) by generalized operator of conjugation ρ̂

we get
(

1

c

∂

∂t
+ α̂ ~∇

)

W̃ =
mc

~
(−Ṽ) ,

(

1

c

∂

∂t
+ α̂ ~∇

)

ρ̂Ṽ =
mc

~
ρ̂W̃ .

(44)

On some conditions the equations of system (44) can be absolutely equivalent.

For that functions Ṽ and W̃ should satisfy the following relations:

W̃ = ηρ̂Ṽ , −Ṽ = ηρ̂W̃ ,

where η is some constant. In particular for scalar η we obtain η = ±i. So if the

wave function W̃ and accessory function Ṽ satisfy the condition

Ṽ = ±iρ̂W̃ , (45)

then the wave function W̃ satisfies the first-order equation. The sign in (45) can

be chosen arbitrarily. If Ṽ = +iρ̂W̃ then the first-order equation has the following

form:
(

1

c

∂

∂t
+ α̂ ~∇ + i

mc

~
ρ̂

)

W̃ = 0 . (46)

Actually operator equation (46) is the set of 24 first-order equations corresponding

to the different meanings of operators α̂ and ρ̂. Using substitution (24) Eq. (46)

can be generalized for the particles in an external electromagnetic field
(

1

c

∂

∂t
+

ie

~c
Φ + α̂ ~∇ −

ie

~c
α̂ ~A + i

mc

~
ρ̂

)

W̃ = 0 . (47)
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It is clear that for Eq. (46) there is also the inverse procedure of obtaining the

second-order equation analogous to the procedure used in the Dirac theory. Acting

on Eq. (46) by operator
(

1

c

∂

∂t
− α̂~∇− i

mc

~
ρ̂

)

,

we get the following equation:
(

1

c

∂

∂t
− α̂ ~∇− i

mc

~
ρ̂

)(

1

c

∂

∂t
+ α̂ ~∇ + i

mc

~
ρ̂

)

W̃ = 0 .

Multiplying the operators in the left part we can obtain the sedeonic second-order

equation
(

1

c

∂

∂t
− α̂ ~∇

)(

1

c

∂

∂t
+ α̂ ~∇

)

W̃ = −
m2c2

~2
W̃ . (48)

However, we specially emphasize though Eq. (48) coincides in form with the

second-order equation (42), but the solutions to (48) should also satisfy the first-

order equation (46) simultaneously. It essentially restricts the class of possible wave

functions.

In conclusion to this section we note that in fact the generalized first order

Dirac-like equations (46) and (47) describe particles, which do not have the fields

G0 and ~G (see expressions (31) and (40)).

6. Plane Wave Solutions to the First-Order Equations

Equation (46) enables the plane wave solution. Let us search a solution in the form

W̃ = Ũ exp{−i(Et− (~p · ~r))/~} ,

where Ũ is the wave amplitude, ~p is the absolute vector of momentum. Then

Eq. (46) is transformed to

(E − cα̂~p − mc2ρ̂)Ũ = 0 . (49)

This equation gives us the dispersion relation

(E2 − p2c2 − m2c4)8 = 0 , (50)

where p2 = p2
x + p2

y + p2
z. The roots of Eq. (50) E = ±

√

p2c2 + m2c4 are eighthly

degenerate.

Representing in (49) Ũ = U0 + ~U we obtain the following equation:

EU0 + E ~U − cα̂~pU0 − cα̂(~p · ~U) − cα̂[~p × ~U] − mc2ρ̂U0 − mc2ρ̂ ~U = 0 .

Separating sedeon-scalar and sedeon-vector parts we get the following system:

EU0 − cα̂(~p · ~U) − mc2ρ̂U0 = 0 ,

E ~U − cα̂~pU0 − cα̂[~p × ~U] − mc2ρ̂ ~U = 0 .
(51)
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Let momentum is directed along the Z axis, so ~p = pa3, where p is the momen-

tum module. Then the system (51) can be transformed in the following way:

EU0 − cα̂pUz − mc2ρ̂U0 = 0 ,

EUz − cα̂pU0 − mc2ρ̂Uz = 0 ,

EUx + icα̂pUy − mc2ρ̂Ux = 0 ,

EUy − icα̂pUx − mc2ρ̂Uy = 0 .

Thus we obtain the following relations between components of the wave function:

Uz =
α̂

cp
(E − mc2ρ̂)U0 , (52)

Uy =
iα̂

cp
(E − mc2ρ̂)Ux , (53)

or inversed relations

U0 =
α̂

cp
(E − mc2ρ̂)Uz ,

Ux = −
iα̂

cp
(E − mc2ρ̂)Uy .

Taking into account relations (52) and (53) we get the amplitude of wave func-

tion in the following form:

Ũ =

(

1 +
α̂

cp
(E − mc2ρ̂)a3

)

U0 +

(

a1 +
iα̂

cp
(E − mc2ρ̂)a2

)

Ux , (54)

where U0 and Ux are arbitrary sedeon-scalar constants. The expression (54) can

also be represented in the following compact form:

Ũ =

(

1 +
α̂

cp
(E − mc2ρ̂)a3

)

(U0 + Uxa1) . (55)

7. Sedeonic First-Order Equations for Massless Particles

Using the results of Sec. 5 we can indicate the generalized sedeonic first-order

equation for massless particles (neutrinos):
(

1

c

∂

∂t
+ α̂ ~∇

)

W̃ = 0 , (56)

where as before the operator α̂ takes any meaning from α̂ ∈ {±êr,±êt,±êrt} and

describes different transformational properties. The operator equation (56) is the

set of three groups equations differing in properties of operators α̂.

Equation (56) enables the plane wave solution. Let us search a solution in the

form

W̃ = Ũ exp{−i(Et − (~p · ~r))/~} ,
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then Eq. (56) is transformed to

(E − cα̂~p)Ũ = 0 .

The dispersion relation for Eq. (56) has the form

E = γνcp ,

where p is the momentum module, γν = +1 for neutrino and γν = −1 for antineu-

trino.

Let momentum is directed along the Z axis, so ~p = pa3. Then the amplitude of

the wave function can be obtained directly from the expression (55) if we take the

mass equal to zero:

Ũ = (1 + γν α̂a3)(U0 + Uxa1) ,

where U0 and Ux are arbitrary sedeon-scalar complex constants. Then the gener-

alized plane wave solution to Eq. (56) can be written in the following form:

W̃ = (1 + γν α̂a3)(U0 + Uxa1) exp{ip(z − γνct)/~} .

Concluding this section we would like to indicate one special sedeonic first-order

equation for the massless particle corresponding to special case α̂ = ±1. In this case

Eq. (56) takes the form
(

1

c

∂

∂t
+ ~∇

)

W̃ = 0 , (57)

or adjoint form
(

1

c

∂

∂t
− ~∇

)

W̃ = 0 . (58)

Note that the operators in the left part of Eqs. (57) and (58) are not changed

under space or time conjugation at all. We also emphasize that these equations

do not correspond to any first-order equations for the massive particles from the

system of (46), so it is the separate case. Equation (57) has the following plane

wave solution for particle (ν):

W̃ν = (1 + a3)(U0 + Uxa1) exp{ip(z − ct)/~} (59)

and for the antiparticle (ν̄):

W̃ν̄ = (1 − a3)(U0 + Uxa1) exp{ip(z + ct)/~} . (60)

Consequently Eq. (57) describes simultaneously the particle and the antiparticle.

It is clearly seen from (59) and (60) that wave functions of massless particle and

antiparticle are the eigenfunctions of the operator â3 (see Ref. 25). At that the

wave function of particle corresponds to the state with the eigenvalue λ = +1

and the wave function of antiparticle corresponds to the state with the eigenvalue

λ = −1. So the expressions (59) and (60) describe polarized particles. Contrary to

(57) Eq. (58) describes the particle in the state with the eigenvalue λ = −1 and

antiparticle in the state with the eigenvalue λ = +1.



January 7, 2010 9:21 WSPC/139-IJMPA 04773

Sedeonic Generalization of Relativistic Quantum Mechanics 6253

8. Conclusion

Thus in this paper we represented sixteen-component values “sedeons,” generating

associative noncommutative algebra. The sedeon is the complicated space–time

object consisting of absolute scalar, space scalar, time scalar, space–time scalar,

absolute vector, space vector, time vector, and space–time vector. All these values

are differed with respect to spatial and time inversion.

We proposed a scheme for constructing relativistic quantum mechanics using

sedeonic space–time operators and sedeonic wave functions. It was shown that

the sedeonic second-order equation, corresponding to the Einstein relation between

energy and momentum, correctly describes the interaction between spin 1/2 and the

electromagnetic field. It is established that the sedeonic wave function of a particle

in the state with defined spin projection has the specific space–time structure in

the form of a sedeonic oscillator with two spatial polarizations: longitudinal linear

and transverse circular.

We showed that the sedeonic second-order wave equation can be reformulated

in the form of the system of the first-order Maxwell-like equations for the massive

fields. We proposed the set of sedeonic first-order equations analogous to the Dirac

equation. It was shown that the sedeonic Dirac-like first-order equations describe

particles, which do not have massive fields. In dependence of space–time operators

these equations describe three different kinds of particles (leptons) which are differed

by space–time transformational properties. We proposed three kinds of sedeonic

first-order equations for massless particles (neutrinos) corresponding to the three

types of equations for massive leptons. Besides we indicated the special type of

absolute equation for massless particle, which does not correspond to any leptonic

equation at all.
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