
Journal of Magnetism and Magnetic Materials 552 (2022) 169193

A
0

Contents lists available at ScienceDirect

Journal of Magnetism and Magnetic Materials

journal homepage: www.elsevier.com/locate/jmmm

Research articles

Emission of electromagnetic radiation due to spin-flip transitions in a
ferromagnet
E.A. Karashtin ∗

Institute for physics of microstructure of RAS, Nizhniy Novgorod, 603950, GSP-105, Russia
Lobachevsky University, Gagarin ave., 23, Nizhniy Novgorod, 603950, Russia

A R T I C L E I N F O

Keywords:
Exchange interaction
Spin–orbit coupling
Non-collinear ferromagnet
Tunnel magnetic junction

A B S T R A C T

We theoretically analyze the probability of electromagnetic wave emission due to electron transitions between
spin subbands in a ferromagnet. Different mechanisms of such spin-flip transitions are considered. One
mechanism is electron transitions caused by the magnetic field of the wave. Another mechanism is due
to the Rashba spin–orbit interaction. While the two mentioned mechanisms contribute in a homogeneously
magnetized ferromagnet, there are two other mechanisms that occur for a non-collinearly magnetized medium.
The first mechanism is known and is due to the dependence of the exchange interaction constant on the
quasimomentum of the conduction electrons. The second one is due to the minimal coupling. It follows from
the connection of spin and spatial degrees of freedom in any non-collinearly magnetized medium. We study
these mechanisms in a non-collinear ferromagnet with a helicoidal magnetization distribution. Estimations of
the probabilities of electron transitions due to different mechanisms are made for realistic parameters, and we
compare the mechanisms. We also estimate the radiation power and the threshold current in a simple model
in which spin is injected into the ferromagnet by a spin-polarized electric current through a tunnel barrier.
1. Introduction

Electron transitions between energy bands may be accompanied
by electromagnetic wave generation. This paper is devoted to the
mentioned phenomenon when electrons jump between spin subbands
in a ferromagnet. In a simple conductor without a spin–orbit interaction
or applied magnetic field the energy states of conduction electrons
are doubly degenerate with respect to spin. In a homogeneous fer-
romagnet their spin states are split into two subbands. The energy
gap between these subbands usually corresponds to an infrared or
terahertz frequency, depending on the material [1,2]. Therefore study
of electron transitions between the spin subbands by electromagnetic
wave generation is important. This is encouraged by a possibility of
precise control of the magnetic state of the ferromagnet by applying a
magnetic field or fabrication of different nanostructures [3–9].

Terahertz wave generation by ferromagnets which are irradiated by
a femtosecond optical pulse was developed recently [10–14]. Usually
this effect is explained by intraband electron transitions, i.e. processes
without spin flip [15]. The terahertz frequency range follows from
the pulse duration (typically it is 10–50 fs which corresponds to 20–
100 THz). The emission spectrum here is characterized by broad fre-
quency range. Considering the interband electron transitions, i.e. tran-
sitions with spin flip, the frequency range is determined by the energy

∗ Correspondence to: Institute for physics of microstructure of RAS, Nizhniy Novgorod, 603950, GSP-105, Russia.
E-mail address: eugenk@ipmras.ru.

gap between spin subbands. Further, stimulated emission of electro-
magnetic wave may be obtained in such case.

It is well known that electric-dipole transitions of electrons between
spin subbands are forbidden in a homogeneous ferromagnet. In order
to show this, let us consider the Vonsovsky s-d exchange model [16].
In this model, the magnetization 𝑴 is created by localized d- or f-
electrons, and the conduction electrons which are supposed to be
s-electrons have the following hamiltonian:

�̂� =
�̂�2

2𝑚𝑒
+ 𝐽 (�̂� ⋅𝑴) , (1)

where �̂� = −𝑖ℏ∇ is the electron momentum operator, 𝑚𝑒 is the electron
mass, 𝐽 is the exchange constant, �̂� is the vector of Pauli matrices which
is proportional to the operator of electron spin. Here 𝑴 is supposed
to be a constant vector along the Cartesian 𝑧-axis. In equilibrium, the
electron wavefunctions are

𝜓+ = 𝑒𝑥𝑝 (𝑖𝒌𝒓)
(

1
0

)

, 𝜓− = 𝑒𝑥𝑝 (𝑖𝒌𝒓)
(

0
1

)

, (2)

where 𝒌 is the electron wave vector, 𝒓 is the vector of Cartesian
coordinates. The wave functions of two spin subbands correspond
to electrons with average spin either parallel or antiparallel to 𝑴 .
vailable online 28 February 2022
304-8853/© 2022 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.jmmm.2022.169193
Received 29 April 2021; Received in revised form 17 December 2021; Accepted 16
 February 2022

http://www.elsevier.com/locate/jmmm
http://www.elsevier.com/locate/jmmm
mailto:eugenk@ipmras.ru
https://doi.org/10.1016/j.jmmm.2022.169193
https://doi.org/10.1016/j.jmmm.2022.169193
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmmm.2022.169193&domain=pdf


Journal of Magnetism and Magnetic Materials 552 (2022) 169193E.A. Karashtin

a
e

𝐻

T
m
m
v
w
n
i
a
p
s
e
i
i
e
t

m
T
w
i

𝐻

w
f
A
m
c

𝐻

I
t
e
b

𝐻

e

𝜀

These wavefunctions are orthogonal to each other. In the electro-dipole
approximation, only the electric field of the wave 𝑬𝜔 = 𝑬𝑒𝑥𝑝 (−𝑖𝜔𝑡)
is taken into account (𝜔 is the wave frequency). The coordinate de-
pendence of this electric field leads to spatial dispersion. It should be
neglected in the electric dipole approximation (the corrections brought
about by the wave spatial dispersion are usually very small). In order to
study the interaction of electrons with an electromagnetic wave in such
approximation, it is convenient to take the gauge for which the electric
potential is zero. Thus the electron momentum operator �̂� should be
changed to

(

�̂� − 𝑒
𝑐𝑨𝜔

)

[17,18], where 𝑨𝜔 = −𝑖 𝑐𝜔𝑬𝜔 is the vector-
potential. The operator of interaction of electrons and electromagnetic
wave takes the form

�̂�𝜔
𝑚𝑐 =

𝑒ℏ
2𝑚𝑒𝜔

(

𝑬𝜔 ⋅ ∇
)

, (3)

where 𝑒 is the absolute electron charge. This interaction is called the
minimal coupling [19]. It is obvious that since the operator (3) does not
change the electron spin its matrix element is zero and thus the electron
transition probability due to interaction with an electromagnetic wave
is zero.

This situation can be changed by taking into account some ad-
ditional interaction or condition that breaks such symmetry. It was
predicted earlier that if the exchange constant depends on the electron
momentum 𝐽 = 𝐽 (�̂�) the electron transitions are allowed [20,21]. In
order to obtain these transitions, one should take into account that
the electron momentum should be shifted here due to non-zero 𝑨𝜔,
s in (1). This leads to an additional operator for the interaction of the
lectron and the electromagnetic wave linear in 𝑬𝜔

̂ 𝜔
𝐽 = −𝑖 𝑒

𝜔

(

𝑬𝜔 ⋅
𝜕𝐽
𝜕𝒑

)

(�̂� ⋅𝑴) . (4)

he interaction operator (4) flips spins in the case of a non-collinearly
agnetized medium and therefore leads to electron transitions. This
echanism of electromagnetic wave emission has been studied pre-

iously [22,23] in a system that consists of two magnetic layers in
hich the magnetizations are not parallel. Experiments on electromag-
etic wave generation in non-uniform ferromagnets were performed
nspired by these investigations [24–26]. Additional modifications such
s anisotropic exchange interaction were considered in order to im-
rove the wave generation properties [27]. However it is hard to
eparate the mentioned mechanism from others that are possible in the
xisting experiments. Another important property of this mechanism
s its spin–orbit nature. Indeed, only the exchange interaction is taken
nto account in the hamiltonian (1). But the dependence of 𝐽 on
lectron momentum may arise only from the spin–orbit interaction in
he subsystem of localized d- or f-electrons.

There are mechanisms of electron spin-flip transitions in ferro-
agnets different from the one described in the previous paragraph.
he most simple mechanism is caused by the magnetic field of the
ave. The magnetic field provides transitions through the Zeeman

nteraction [17]

̂ 𝜔
𝑍 = 𝜇0 𝑔

(

�̂� ⋅ 𝑩𝜔
)

(5)

here 𝑩𝜔 is the magnetic field of the wave, 𝑔 is the electron g-
actor that is supposed to be equal to 2, 𝜇0 is the Bohr magneton.
nother mechanism that exists in homogeneously magnetized ferro-
agnet is caused by the spin–orbit interaction. In this paper the Rashba

oupling [19,28] is considered

̂𝑅 = 𝑖
(

𝜶𝑅 ⋅ [∇ × �̂�]
)

. (6)

t usually appears at surfaces, and the Rashba vector 𝜶𝑅 is parallel to
he surface normal and leads to the interaction of electrons with the
lectromagnetic wave in the form (for details, see appropriate section
elow):

̂ 𝜔 = 𝑖𝑒 (

𝜶 ⋅
[

�̂� × 𝑬
])

. (7)
2

𝑅 2ℏ𝜔 𝑹 𝜔
Finally, a fully exchange mechanism exists in non-collinearly magne-
tized ferromagnets due to the connection between spin and spatial
coordinates in such ferromagnets. This mechanism follows from the
interaction hamiltonian (3) which should be applied to the mixed spin
states of a non-collinear ferromagnet. It was theoretically demonstrated
recently [29] and is studied insufficiently.

In the present work, we consider the magnetic helicoid (Bloch type
spiral):

𝑴 = 𝒆𝑥𝑐𝑜𝑠𝑞𝑧 + 𝒆𝑦𝑠𝑖𝑛𝑞𝑧, (8)

where 𝑞 is inversely proportional to the spiral step, and the Cartesian
coordinate system with the 𝑧-axis along the spiral axis is chosen. This
type of magnetization structure is realized for example in holmium [30]
and in manganese silicene [31] at low temperature. In holmium mate-
rial, electromagnetic wave absorption with spin flip electron transitions
is known [2,32]. This phenomenon is inverse to the electromagnetic
wave generation which is the subject of current paper.

In order to obtain electromagnetic wave generation, one has to
inject non-equilibrium spin into the upper subband. There are several
ways to do this [33]. The most suitable for ferromagnetic metals are
based on the spin pumping effect [34–38] and on the injection of
spin-polarized current [39–41]. The spin pumping effect is usually
quite weak. Further, it is hard to control the magnitude of the spin
current. On the other hand, injection of non-equilibrium spin by a spin-
polarized electric current is realized in a simple system consisting of
two ferromagnets divided by a nonmagnetic interlayer. The voltage
is applied to this system which causes the electric current to flow
from one ferromagnet (spin source) to the other (active region). The
amount of injected spin may be varied widely by changing the applied
voltage. Therefore we consider this mechanism of non-equilibrium spin
injection.

The paper is organized as follows. In Section 2 we perform cal-
culations of electron transition probabilities for the four mentioned
mechanisms. The transition probabilities are estimated for realistic
parameters and are compared to each other. In Section 3 we consider
a simple model in which non-equilibrium spin is injected into the fer-
romagnet by a spin-polarized electric current through a tunnel barrier.
Then estimates of the radiation power and threshold electric current
are performed.

2. Electron transition probabilities

We describe the conduction electrons by the hamiltonian (1) which
takes into account the exchange coupling in the s-d model approach.
The magnetization 𝑴 may either be constant or depend on coordinates
(see (8)). Different types of interactions additionally taken into account
lead to different probabilities of electron transitions between spin
subbands. While the Rashba or Zeeman coupling may be taken into
account in perturbation theory, a non-collinear magnetic system has
rather different spin subbands.

2.1. Uniform ferromagnet. Rashba and Zeeman coupling

In this subsection we consider two mechanisms that exist in a uni-
form 𝑴 = 𝒆𝑧. The wave functions have the form (2) with corresponding
nergy of electrons:

± = ℏ2𝒌2
2𝑚𝑒

± 𝐽 . (9)

In order to calculate the probability of electron transitions between spin
subbands, we use the Fermi golden rule [17]

𝑊 ±
𝒌𝒌′

= 2𝜋
ℏ

|

|

|

𝐻±
𝒌𝒌′

|

|

|

2 𝛥∕𝜋
(𝛥𝜀 − ℏ𝜔)2 + 𝛥2

(10)

where spin flip processes due to reasons other than interaction with
electromagnetic wave (e.g. scattering on magnetic impurities) are taken
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Fig. 1. Uniformly magnetized system with Rashba coupling. 𝑴 is directed along the
𝑧-axis; the angle between 𝜶𝑅 and the 𝑥-axis is 𝜃.

into account, 𝜏𝑠 = 2𝜋ℏ∕𝛥 being the spin relaxation time; 𝐻±
𝒌𝒌′

=
⟨

𝜓+
(

𝒌′
)

|�̂� 𝑖𝑛𝑡
|𝜓− (𝒌)

⟩

is the matrix element of the hamiltonian of inter-
action of electrons with electromagnetic wave �̂� 𝑖𝑛𝑡; (𝒌,−) and

(

𝒌′,+
)

are the initial and final states; 𝛥𝜀 = 𝜀+
(

𝒌′
)

− 𝜀− (𝒌) is the energy
difference between these states.

Electron transitions due to the magnetic field of the wave are
described by the interaction hamiltonian (5). The magnetization is
assumed to be uniform. Using (10) we arrive at

𝑊 ±
𝑍 = 2

ℏ

(

𝑒ℏ |[𝑩 ×𝑴]|
𝑚𝑒𝑐

)2 𝛥
(𝛥𝜀 − ℏ𝜔)2 + 𝛥2

𝛿
(

𝒌 − 𝒌′
)

, (11)

𝛿 () is the Dirac delta-function. Only the magnetic field orthogonal
to the magnetization 𝑴 participates in intersubband spin transitions.
The momentum (or electron wave vector) is conserved here, as for all
mechanisms of electron transitions considered below.

In order to find the probability of electron transitions due to Rashba
spin–orbit coupling, it is necessary to take into account both (3) and
(6). The coordinate system is chosen so that 𝑴 = 𝒆𝑧, and 𝜶𝑅 =
𝛼𝑅

(

𝒆𝑥𝑐𝑜𝑠𝜃 + 𝒆𝑧𝑠𝑖𝑛𝜃
)

(see Fig. 1) thus describing the general case. We
restrict ourselves to the linear order in 𝛼𝑅. In this approximation the
energy and wave functions are

𝜀± = ℏ2𝒌2
2𝑚𝑒

±
(

𝐽 − 𝛼𝑅𝑘𝑦𝑐𝑜𝑠𝜃
)

, (12)

𝜓+ = 𝑒𝑥𝑝 (𝑖𝒌𝒓)

(

1

− 𝛼𝑅
((

𝑘𝑦−𝑖𝑘𝑥
)

𝑠𝑖𝑛𝜃−𝑖𝑘𝑧𝑐𝑜𝑠𝜃
)

2𝐽

)

, (13)

𝜓− = 𝑒𝑥𝑝 (𝑖𝒌𝒓)

(

𝛼𝑅
((

𝑘𝑦+𝑖𝑘𝑥
)

𝑠𝑖𝑛𝜃+𝑖𝑘𝑧𝑐𝑜𝑠𝜃
)

2𝐽
1

)

. (14)

Substituting these wave functions into (10) with (3) as the interaction
hamiltonian we see that the momentum is conserved and the matrix
element of transitions is zero. Note that this property remains in higher
orders in 𝛼𝑅. Thus there are no spin-flip electron transitions. However
the Rashba hamiltonian (6) itself depends on the electron momentum.
This momentum �̂� = −𝑖ℏ∇ should be shifted taking the account of 𝑨𝜔,
as in other parts of the hamiltonian. In turn, this leads to the interaction
hamiltonian written in (7). The hamiltonian (7) is linear in the Rashba
interaction itself. Therefore its matrix elements should be found with
the use of the wave functions (2). After substituting them into (10) we
have

𝑊 ±
𝑅 = 2

ℏ

( 𝑒𝛼𝑅
2ℏ𝜔

)2 (
𝐸2
𝜏 + 𝐸

2
𝑦𝑠𝑖𝑛

2𝜃
) 𝛥
(𝛥𝜀 − ℏ𝜔)2 + 𝛥2

𝛿
(

𝒌 − 𝒌′
)

, (15)

where 𝐸𝜏 is the component of wave electric field which is orthogonal
to 𝜶𝑅. It is obvious that in such an approach the electron transition
probability is proportional to the square of the Rashba constant in the
lowest order. The electrons transitions go most effectively when 𝑠𝑖𝑛2𝜃 =
1, i.e. the Rashba vector 𝜶𝑅 is either parallel or antiparallel to the
magnetization 𝑴 . However it is of the same order for 𝜶𝑅 perpendicular
to 𝑴 .
3

2.2. Helical ferromagnet

In this subsection, we consider two mechanisms that exist due to the
exchange interaction in a non-collinear magnetic state. The mechanism
that follows from the dependence of the exchange constant 𝐽 on the
electron momentum is described by the interaction hamiltonian (4).
It is important that if the magnetization is uniform (𝑴 = 𝒆𝑧) this
hamiltonian contains only �̂�𝑧 and therefore it does not flip spins. In
the literature this mechanism was suggested and studied for a non-
collinear system that consists of two layers uniformly magnetized in
different directions [20,23]. We now study this mechanism for the
helical magnetization distribution (8).

Exact solutions of the Schrodinger equation with the hamiltonian
(1) are known from the literature [42,43]:

𝜓+ = 1
√

1 + 𝑣2
𝑒−𝑖

𝜀+
ℏ 𝑡+𝑖𝒌𝒓

(

𝑣𝑒−𝑖
𝑞
2 𝑧

𝑒𝑖
𝑞
2 𝑧

)

, (16)

𝜓− = 1
√

1 + 𝑣2
𝑒−𝑖

𝜀−
ℏ 𝑡+𝑖𝒌𝒓

(

𝑒−𝑖
𝑞
2 𝑧

−𝑣𝑒𝑖
𝑞
2 𝑧

)

, (17)

where 𝑞 is the wave vector that is determined by the spiral step, as
before, and the constant 𝑣

(

𝑘𝑧
)

is determined by

𝑣 =
𝑗

𝑘𝑧𝑞 +
√

𝑗2 + 𝑘2𝑧𝑞2
≡

−𝑘𝑧𝑞 +
√

𝑗2 + 𝑘2𝑧𝑞2

𝑗
(18)

where we introduce the notation 𝑗 = 2𝑚𝑒
ℏ2
𝐽 . The eigenstates (16), (17)

correspond to energy defined as

𝜀± = ℏ2

2𝑚𝑒

(

𝒌2 + 𝑞2

4
±
√

𝑗2 + 𝑘2𝑧𝑞2
)

. (19)

After calculating the matrix elements of the hamiltonian (4) on the
wave functions (16), (17) we get the electron transitions probability

𝑊 ±
𝐽 = 2

ℏ

(

𝑒ℏ
𝑚𝑒𝜔

(

𝑬 ⋅
ℏ𝑘𝑧
𝐽

𝜕𝐽
𝜕𝒑

))2
𝑞2 𝐽

2

𝛥𝜀2
𝛥

(𝛥𝜀 − ℏ𝜔)2 + 𝛥2
𝛿
(

𝒌 − 𝒌′
)

.

(20)

This probability is proportional to
(

𝑞𝑙𝜔
)2 where 𝑙𝜔 ∝ 𝐸 is the magnitude

of the classical oscillations of electrons in the wave electric field in
the direction for which 𝐽 depends on 𝒌. Importantly, the smaller
scale of the magnetization change leads to the larger effect. This is
due to the fact that the effect is caused by the inhomogeneous non-
collinear distribution of magnetization. It is also important to note that
the electron energy change 𝛥𝜀 depends on 𝑘𝑧 for magnetic helicoid.
Therefore the spin relaxation processes that lead to energy uncertainty
are important here.

A mechanism that is solely due to the exchange coupling exists
in non-collinear ferromagnets due to the minimal coupling described
by (3). It does not need the dependence of the exchange constant 𝐽
on the electron quasimomentum. The electron transitions probability
determined by (10) for the interaction hamiltonian (3) with the wave
functions (16), (17) is

𝑊 ±
𝑚𝑐 =

2
ℏ

(

𝑒ℏ𝐸𝑧
2𝑚𝑒𝜔

)2
𝑞2 𝐽

2

𝛥𝜀2
𝛥

(𝛥𝜀 − ℏ𝜔)2 + 𝛥2
𝛿
(

𝒌 − 𝒌′
)

. (21)

This probability is also proportional to
(

𝑞𝑙𝜔
)2, but the magnitude of the

classical oscillations along the direction of the magnetization change
are important here. Thus, (20) and (21) lead to different polarization
properties.
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2.3. Comparison of transition probabilities

In this subsection we compare all four obtained electron transition
probabilities (11), (15), (20), and (21). The realistic parameters of both
uniform and helical ferromagnets and boundaries are taken for our
estimates. The probability 𝑊 ±

𝑚𝑐 obtained for a magnetic spiral is taken
as a reference since it is solely due to the exchange coupling.

If we take ℏ𝜔 ≈ 2𝐽 thus supposing the resonant character of electron
transitions then the ratio 𝑊 ±

𝑍 ∕𝑊 ±
𝑚𝑐 may be roughly determined as

𝑊 ±
𝑍 ∕𝑊 ±

𝑚𝑐 ≈
(

4𝑘𝜔
𝑞

)2
, where 𝑘𝜔 = 𝜔

𝑐 is the wave vector of the elec-
tromagnetic wave in vacuum. Taking the parameters of holmium [30]
𝑞 ≈ 107 cm−1 (which corresponds to the spiral step 3.5 nm), 𝐽 ≈ 0.185 eV
we obtain the estimation 𝑊 ±

𝑍 ∕𝑊 ±
𝑚𝑐 ≈ 5.6 ⋅ 10−5. For another example of

a helical ferromagnet, manganese silicene, 𝑞 is approximately 6 times
smaller, and therefore 𝑊 ±

𝑍 ∕𝑊 ±
𝑚𝑐 ≈ 1.8 ⋅ 10−3. Thus, the magnetic dipole

electron transitions due to the Zeeman term have very low probability
and usually may be neglected. The transition probabilities depend on
wave frequency in different ways, but the resonance should be shifted
to very high frequency in order to obtain 𝑊 ±

𝑍 comparable to other
transition probabilities. This does not correspond to any real system
parameters. We therefore omit transitions due to the magnetic field of
the wave below.

Comparing the Rashba mechanism to the exchange mechanism in
helicoidal magnets, again for ℏ𝜔 ≈ 2𝐽 , gives 𝑊 ±

𝑅 ∕𝑊 ±
𝑚𝑐 ≈

(

𝑚𝑒𝛼𝑅
ℏ2𝑞

)2
.

The Rashba interaction usually appears at interfaces. The value of
𝛼𝑅 for ferromagnets may be estimated from the known value of the
Dzyaloshinskii–Moriya interaction (DMI) that appears at the interfaces
between transition ferromagnetic metals and heavy metals. The DMI
constant was measured by the Brillouin light spectroscopy in a [Co/Pt]
multilayer [44]. We use it to roughly estimate 𝛼𝑅 ≈ 1 peV m which
may be considered as an effective Rashba coupling averaged over the
volume of the multilayer system. Then 𝑊 ±

𝑅 ∕𝑊 ±
𝑚𝑐 ≈ 0.013 for holmium

and ≈ 0.4 for MnSi. Therefore the Rashba interaction mechanism should
be important even for simple ferromagnet interfaces. If we consider a
three-layer system in which an interface on two non-magnetic materials
with strong Rashba coupling is placed close to the ferromagnet then
the Rashba coupling may become the main mechanism of the electron
transitions between spin subbands. For example, 𝛼𝑅 ≈ 305 peV m at a
Bi/Ag interface [36]. So in a ferromagnet/Bi / Ag system with a thin
Bi layer 𝑊 ±

𝑅 ∕𝑊 ±
𝑚𝑐 ≈ 4 if holmium is taken to calculate 𝑊 ±

𝑚𝑐 and even
larger in manganese silicene.

Two mechanisms of interband electron transitions in non-collinear
ferromagnets defined by (20) and (21) have different symmetry with
respect to the wave polarization: the first one is determined by the
dependence of 𝐽 on 𝒌 and therefore by the crystallographic structure of
the ferromagnet, while the second one is determined by the direction
of magnetization change. The direction of change of magnetic mo-
ment in natural non-collinear ferromagnets such as holmium is strictly
connected to their crystallographic directions and therefore these two
mechanisms are similar in such natural ferromagnets. However in
artificial ferromagnets the situation may change. In principle, in a
polycrystalline magnetic structure with random directions of crystal-
lographic axes the mechanism defined by (20) may vanish while (21)
depends only on the magnetic structure and therefore may exist. In
order to compare these two mechanisms quantitatively, we use the
estimation from literature [20,21]
|

|

|

|

𝜕𝐽
𝜕𝒑

|

|

|

|

≈ 𝐽
𝑝0
, (22)

here 𝑝0 = ℏ
𝑎 , and 𝑎 ≈ 10−8 cm is the lattice constant. Then the ratio

𝑊 ±
𝐽 ∕𝑊 ±

𝑚𝑐 ≈
(

𝑘𝑧𝑎
)2. For 𝑘𝑧 ≈ 𝑘𝑓 and the Fermi energy 𝜀𝑓 =

ℏ2𝑘2𝑓
2𝑚𝑒

≈ 5 eV
e have 𝑊 ±

𝐽 ∕𝑊 ±
𝑚𝑐 ≈ 1. However the estimation (22) is very optimistic,

nd moreover 1 is obtained for the maximum value of 𝑘2𝑧. Therefore
t seems that the electron transitions in a non-collinear ferromagnet
hat occur for constant 𝐽 would be more effective than that which
4

appear from the dependence of 𝐽 on the electron quasimomentum. Both
mechanisms are of the same order of value and therefore should be
taken into account simultaneously.

The obtained results are summed in the list below.

i The probability of electron transitions between the spin sub-
bands due to the Zeeman term is three to five orders smaller
than that provided by the minimal coupling in typical ferromag-
nets with helical magnetization distribution such as holmium or
manganese silicene. Therefore it can be neglected.

ii The electron transition probability due to the Rashba coupling
at the boundary of a ferromagnet and a heavy metal (such as
Pt) is one or two orders smaller compared to that provided
by the minimal coupling in the helical ferromagnets mentioned
below. However it can be sufficiently increased if a system such
as ferromagnet/Bi / Ag with a thin Bi interlayer (thickness is
smaller than the spin relaxation length) is taken. In such a
system, the Rashba coupling is obtained at an interface between
bismuth and silver.

iii Both the minimal coupling and the dependence of the exchange
constant J on the electron momentum provide spin-flip elec-
tron transitions only in non-collinear ferromagnets. In typical
helical ferromagnets (Ho or MnSi) they lead to the electron
transition probabilities that are of the same order of value. Both
these probabilities are inversely proportional to the character-
istic scale of the magnetization change (the spiral period for
helical magnetization distribution).

From this list, one may conclude that the minimal coupling and the
dependence of the exchange constant J on the electron momentum are
the most reliable mechanisms of the electromagnetic wave generation
due to the spin-flip transitions of electrons. We further study the wave
emission properties for these two mechanisms in a ferromagnet with
helical magnetization distribution.

3. Emission rate and electromagnetic wave radiation power

The electron transition probabilities generally depend on the initial
and final electron quasimomentum. In order to quantitatively deter-
mine the effectiveness of electron transitions we need to average them
over the electron states. In order to obtain emission of the electromag-
netic wave, one should provide a non-equilibrium electron distribution
within the spin subbands. Therefore we consider a simple model of spin
injection into the ferromagnet by a spin-polarized electric current. The
power of electromagnetic wave radiation is also estimated.

The electromagnetic wave radiation power may be found knowing
the stimulated emission rate 𝑅𝑠𝑡 which is defined as

𝑅𝑠𝑡 = ∫ 𝑑𝒌𝑑𝒌′𝑊 ±
𝒌𝒌′

(

𝑓+
(

𝒌′
)

− 𝑓− (𝒌)
)

, (23)

here 𝑓± are the electron distribution functions in two subbands. This
mission rate is an average characteristic of electron transitions. It is
roportional to the intensity of electromagnetic wave, or the density of
hotons 𝑁𝑝:

𝑠𝑡 = 𝐺𝑁𝑝, (24)

here 𝐺 depends on the electron distribution functions in two spin
ubbands. These distribution functions are non-equilibrium and are
etermined by the model of non-equilibrium spin injection into the
ystem. Therefore we first consider a simple model of injection of spin
nto the ferromagnet and then study the emission properties in this
ystem.
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Fig. 2. Spin injection into a ferromagnet (active region with 𝑴 , 𝐽 , 𝜀𝐹 ) from another ferromagnet (spin source with 𝑴𝒔 , 𝐽𝑠 , 𝜀𝑠𝐹 ) for (a) uniform and (b) helicoidal active region.
3.1. Spin injection into a ferromagnet

We suppose that the electrons are injected into the ferromagnet
(active region) from another ferromagnet by electric current through
a tunnel barrier with constant height 𝑈 and thickness 𝐻 (see Fig. 2).
The Fermi level in the ferromagnet that acts as a spin source 𝜀𝑠𝐹 is
supposed to be greater than that in another ferromagnet 𝜀𝐹 which is
the active region. In equilibrium, electrons tunnel from the spin source
into the active region which leads to electric polarization of boundaries
alike the contact potential difference. These tunneling processes are not
important in the framework of the current paper and therefore are not
considered. We suppose that the voltage 𝑉 is applied to the system. This
potential difference drops across the tunnel barrier. The probability of
electron tunneling through the barrier that is linear in 𝑉 is determined
by the equation

𝑃 𝑡𝑢𝑛𝑛± = 𝐴 (𝑈 )
(

𝜀 − 𝜀⟂ ± 𝐽𝑠
)

, (25)

where 𝐽𝑠 is the exchange constant in the spin source, 𝐴 (𝑈 ) is given by

𝐴 (𝑈 ) = 2𝐻

√

2𝑚𝑒
ℏ2

𝑈 𝑒𝑉
𝑈2

exp
⎛

⎜

⎜

⎝

−2𝐻

√

2𝑚𝑒
ℏ2

𝑈
⎞

⎟

⎟

⎠

, (26)

and we assume that the barrier height 𝑈 is much greater than the Fermi
energy 𝜀𝑠𝐹 and the energy 𝑒𝑉 𝐻 gained by the electron in the electric
field created by the voltage. The quantum number 𝑘 in the direction
along the normal to boundaries is mixed with the electron spin .
Therefore we use quantum numbers 𝜀 which is the electron energy and
𝜀⟂ =

ℏ2𝑘2⟂
2𝑚𝑒

where 𝑘⟂ is the quasimomentum along the surface of the
boundaries (the direction of this quasimomentum is not important and
therefore a simple integration over it leads to multiplication by 2𝜋).

We suppose that the spin quantization axis is chosen as in the
active region. The spin source magnetization has the direction opposite
to the magnetization in the active region (see Fig. 2a), so that more
electrons are injected into the upper spin subband than into the lower
one. For the helicoidal magnetization the system is chosen so that
the axis of the helicoid is perpendicular to the tunnel barrier surface.
The magnetization of the spin source is directed oppositely to the
magnetization of the active region at the boundary (Fig. 2b). In this
case the electrons injected with spin parallel or antiparallel to the
magnetization of the spin source may be roughly considered as injected
into the corresponding minority or majority spin subband which may
lead to the population inversion [33]. The probability (25) depends
on the spin of the electron. It is non-zero for the energy of electron
𝜀𝐹 < 𝜀 < 𝜀𝑠𝐹 because all states with 𝜀 < 𝜀𝐹 are occupied by other
electrons in the active region and therefore tunneling to these states is
impossible. On the other hand, 𝜀 < 𝜀𝑠𝐹 is governed by the fact that there
are no electrons with energy greater than 𝜀𝑠 in the spin source. The
5

𝐹

range for 𝜀⟂ is determined by the demand of real 𝑘 along the normal
to boundary surface. For the lower subband (‘‘-’’) 0 < 𝜀⟂ < 𝜀 − 𝐽𝑠
which is determined by the spin source. For the upper subband (‘‘+’’)
0 < 𝜀⟂ < 𝜀 − 𝐽 which is determined by the demand of real 𝑘 in the
active region. Note that there are electrons with 𝜀 − 𝐽 < 𝜀⟂ < 𝜀 + 𝐽𝑠 in
the spin source but they are reflected from the boundary.

The spin-polarized electric current is determined by the electron
momentum averaged with the tunneling probability (25). After a simple
calculation we arrive at

𝑗𝑒± = 𝐴 (𝑈 )
𝜋𝑒𝑚𝑒
3ℏ3

(

(

𝜀𝑠𝐹
)3 − 𝜀3𝐹

)
⎛

⎜

⎜

⎝

1 ± 3
2

𝜀𝑠𝐹 + 𝜀𝐹
(

𝜀𝑠𝐹
)2 + 𝜀2𝐹 + 𝜀𝐹 𝜀𝑠𝐹

(

𝐽𝑠 − 𝐽
)

⎞

⎟

⎟

⎠

.

(27)

Taking into account that 𝑗𝑒+ + 𝑗𝑒− = 𝑗𝑒 we find the constant 𝐴 (𝑈 ) as

𝐴 (𝑈 ) = 𝑗𝑒
3ℏ3

2𝜋𝑒𝑚𝑒
(

(

𝜀𝑠𝐹
)3 − 𝜀3𝐹

) . (28)

Eq. (28) together with (25) determines the tunneling probability via
the electric current density 𝑗𝑒.

The electron density in the two spin subbands in the active region is
denoted by 𝑁± and the correction to this density due to spin polarized
current by 𝛿𝑁±. We suppose that the total electron number does not
change in time in the active region, i.e. the electrons are injected via
the tunnel barrier and leave on the other side of the active region. In
this case 𝛿𝑁± = 𝛿𝑁0±𝛿𝑁 , where the total number of injected electrons
2𝛿𝑁0 is constant and 𝛿𝑁 determines the electron spin polarization.
In addition, we describe the system by the electron density averaged
over the thickness of the active region. However we take into account
spin relaxation within the active region. If the spin relaxation length
is 𝜆𝑠 and the fraction of electrons injected into the upper (lower) spin
subband with respect to the total number of injected electrons is 𝑎± =
𝑗𝑒±
𝑗𝑒

then the fraction of the electrons that leave the active region with

the same spin is
(

𝑎± − 1
2

)

exp
(

− 𝐿
𝜆𝑠

)

+ 1
2 where 𝐿 is the thickness of

active region. We then have for the electron density averaged over the
active region thickness

̇𝛿𝑁+ = − ̇𝛿𝑁− = ̇𝛿𝑁 =
𝑗𝑒
𝑒𝐿
𝜂
(

1 − exp
(

− 𝐿
𝜆𝑠

))

− 𝛿𝑁
𝜏𝑠
, (29)

where 𝜏𝑠 is the spin relaxation time as before, and the efficiency of spin
injection 𝜂 is determined as

𝜂 = 1
2
𝑗+ − 𝑗−
𝑗+ + 𝑗−

= 3
4

𝜀𝑠𝐹 + 𝜀𝐹
(

𝜀𝑠𝐹
)2 + 𝜀2𝐹 + 𝜀𝑠𝐹 𝜀𝐹

(

𝐽𝑠 − 𝐽
)

. (30)

This corresponds to previously used equation for spin-polarized elec-
tron density [20,21,29] where 𝜂 was introduced phenomenologically.
It should be noted that the spin injection efficiency is determined by
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both the exchange constant of spin source 𝐽𝑠 and the exchange constant
of active region 𝐽 . If 𝐽 > 𝐽𝑠 then there is no population inversion,
i.e. more electrons are injected into lower spin subband than into
upper one. In order to have 𝜂 > 0 one needs to inject spins from a
stronger ferromagnet than that is used as the active region, for which
the inequality 𝐽𝑠 > 𝐽 is satisfied. Eq. (29) determines the stationary
non-equilibrium state with no stimulated emission:

𝛿𝑁∗ =
𝑗𝑒𝜏𝑠
𝑒𝐿

𝜂
(

1 − exp
(

− 𝐿
𝜆𝑠

))

. (31)

n this state the injected non-equilibrium spin is compensated by the
pin relaxation process in the active region.

In the existing literature [20,21,23,29] it is implied that all injected
lectrons immediately relax to the lowest vacant states inside the spin
ubband, thus supposing that the energy relaxation time 𝜏𝑒 ≪ 𝜏𝑠 and in
ddition that 𝜏𝑒 ≪

𝐿
𝑣𝐹

. However the typical time for an electron to pass
through the active region 𝐿

𝑣𝐹
is much smaller than 𝜏𝑒 for the thickness

of the active region 𝐿 ∼ 10 nm (the electromagnetic wave emission
is accompanied by a change of electron energy but these processes
are supposed to give a small correction to 𝜏𝑒) [45]. Therefore in the
present work we assume that the electron energy does not relax within
the active region (i.e. the electron transitions with photon emission are
supposed to give a small correction to the distribution function which is
beyond the scope of our consideration). The non-equilibrium correction
to the electron distribution function is determined by the probability of
electron injection (25):

𝛿𝑓+ = 𝑗𝑒
3ℏ3

(

𝜀 − 𝜀⟂ + 𝐽𝑠
)

4𝜋𝑒𝑚𝑒
(

(

𝜀𝑠𝐹
)3 − 𝜀3𝐹

)

𝜆𝑠
𝐿

(

1 − 𝑒−
𝐿
𝜆𝑠

)

,

𝜀 ∈
(

𝜀𝐹 , 𝜀
𝑠
𝐹
)

, 𝜀⟂ ∈ (0, 𝜀 − 𝐽 ) , (32)

𝑓− = 𝑗𝑒
3ℏ3

(

𝜀 − 𝜀⟂ − 𝐽𝑠
)

4𝜋𝑒𝑚𝑒
(

(

𝜀𝑠𝐹
)3 − 𝜀3𝐹

)

𝜆𝑠
𝐿

(

1 − 𝑒−
𝐿
𝜆𝑠

)

,

𝜀 ∈
(

𝜀𝐹 , 𝜀
𝑠
𝐹
)

, 𝜀⟂ ∈
(

0, 𝜀 − 𝐽𝑠
)

, (33)

where we take into account the spin relaxation processes and average
the distribution function over the thickness of the active region and
also take into account that only electrons with positive 𝑘 from the spin
ource to the active region contribute to 𝛿𝑓±. Note that the equilibrium
lectron distribution function is determined as

0± = 2, 𝜀 ∈
(

±𝐽 , 𝜀𝐹
)

, 𝜀⟂ ∈ (±, 𝜀 ∓ 𝐽 ) , (34)

here we take into account that there are electrons with two signs of
𝑧 for each energy level, and the nonequilibrium distribution function
s 𝑓± = 𝑓0± + 𝛿𝑓±. It is important to note that the emission rate (23)
ontains the difference of electron densities at different energy rates
+ (𝜀 + 𝛥𝜀)−𝑓− (𝜀), where 𝛥𝜀 is the energy difference between two spin
ubbands.

We see from (32), (33) that the model of spin injection into the ac-
ive region is very important because it determines the non-equilibrium
lectron distribution function. In our model, the result is obtained for
he non-equilibrium distribution function in terms of 𝑗𝑒 and thus does
ot directly contain the barrier height 𝑈 .

.2. Emission rate and critical current

Knowing the electron distribution function (32), (33) and the prob-
bility of electron transition between two spin subbands we may find
he stimulated emission rate with the use of (23). There are two
ontributions into 𝑅𝑠𝑡. The first one (𝑅(1)

𝑠𝑡 ) is due to the equilibrium
art of the distribution function. Electrons with 𝜀 ∈

(

𝜀𝐹 − 2𝐽 , 𝜀𝐹
)

may
ransfer from the lower spin subband into the upper one because states
ith the same momentum have 𝜀 > 𝜀𝐹 in the upper subband and
6

herefore are free. Obviously, this makes a negative contribution to
𝑠𝑡 which corresponds to electromagnetic wave absorption. The second
art (𝑅(2)

𝑠𝑡 ) is due to the non-equilibrium correction to the distribution
unction. It may be positive for certain parameters, as it is shown below.

The energy difference between the two spin subbands 𝛥𝜀 is con-
tant and equal to 2𝐽 for uniform magnetization 𝑴 . For the magnetic
elicoid the energy gap between spin subbands

𝜀 = ℏ2

𝑚𝑒

√

𝑗2 + 𝑘2𝑧𝑞2 (35)

nd thus depends on 𝑘𝑧. This dependence of 𝛥𝜀 should be taken into
ccount for 𝑘𝑧 ∼ 𝑘𝐹 . For holmium, 𝑞 ∼ 1.8 ⋅ 107 cm−1 and 𝐽 ≈
.185 eV [2,30,32] which gives 𝑗 ∼ 0.48⋅1015 cm−2, and taking 𝜀𝐹 ≈ 1 eV
e have 𝑘𝐹 𝑞 ∼ 0.95 ⋅ 1015 cm−2. However the approximation 𝛥𝜀 ≈ 2𝐽 is

ometimes useful because it allows us to integrate everything exactly.
oreover, it is correct for the mechanism due to the Rashba coupling in
uniform ferromagnet. Therefore we use this approximation first and

hen discuss the result and make corrections.
In order to find 𝑅(1)

𝑠𝑡 in this approximation one should substitute the
quilibrium distribution function (34) and appropriate electron tran-
ition probability (15),(21),(20) into (23). Restricting ourselves to the
owest nonzero order in 𝐽

𝜀𝐹
and 𝐽𝑠

𝜀𝐹
, we obtain after some calculations

𝑅(1)
𝑠𝑡𝑅 = −

(

𝑒
[

𝜶𝑅 × 𝑬
]

ℏ𝜔

)2
2𝜋

(

2𝑚𝑒
)3∕2

ℏ4
𝛥

(ℏ𝜔 − 2𝐽 )2 + 𝛥2
𝐽
𝜀𝐹
𝜀3∕2𝐹 , (36)

𝑅(1)
𝑠𝑡 𝑚𝑐 = −

(

𝑒𝐸𝑧
ℏ𝜔

)2 2𝜋𝑞2
√

2𝑚𝑒

𝛥
(ℏ𝜔 − 2𝐽 )2 + 𝛥2

𝐽
𝜀𝐹
𝜀3∕2𝐹 , (37)

𝑅(1)
𝑠𝑡 𝐽 = −

⎛

⎜

⎜

⎜

⎝

𝑒
(

𝑬 ⋅ ℏ𝑘𝐹𝐽
𝜕𝐽
𝜕𝒑

)

ℏ𝜔

⎞

⎟

⎟

⎟

⎠

2

8𝜋𝑞2

3
√

2𝑚𝑒

𝛥
(ℏ𝜔 − 2𝐽 )2 + 𝛥2

𝐽
𝜀𝐹
𝜀3∕2𝐹 , (38)

where we suppose that the Rashba vector is perpendicular to 𝑴 as
shown in Fig. 2a (the Rashba vector is assumed to be perpendicular
to the surface of the ferromagnet). The part of 𝑅𝑠𝑡 determined by (36)–
(38) depends only on the parameters of the active region. It does not
depend on the electric current 𝑗𝑒. This is obvious since it corresponds
to absorption of light by equilibrium electrons. In previous papers this
part was not taken into account directly. However we show below that
it is very important.

The contribution into 𝑅𝑠𝑡 which appears due to non-equilibrium
spin injection (𝑅(2)

𝑠𝑡 ) is determined by
(

𝛿𝑓+ (𝜀 + 𝛥𝜀) − 𝛿𝑓− (𝜀)
)

. It consists
f two terms: one appears due to electron transitions from the upper
ubband into the lower one and is positive; the other appears due
o backward electron transitions close to 𝜀𝑠𝐹 where 𝛿𝑓+ (𝜀 + 𝛥𝜀) =

and is negative. Substituting the electron transition probabilities
15),(21),(20) and the non-equilibrium distribution functions (32), (33)
nto (23) and performing a simple calculation (with the use of the
pproximation 𝛥𝜀 ≈ 2𝐽 ) we arrive at

(2)
𝑠𝑡𝑅 =

(

𝑒
[

𝜶𝑅 × 𝑬
]

ℏ𝜔

)2

2

√

2𝑚𝑒
ℏ2

𝛥 𝜆𝑠𝐿

(

1 − 𝑒−
𝐿
𝜆𝑠

)

(ℏ𝜔 − 2𝐽 )2 + 𝛥2
𝐽𝑠

(

𝜀𝑠𝐹
)3∕2

𝑗𝑒
𝑒
, (39)

𝑅(2)
𝑠𝑡 𝑚𝑐 =

(

𝑒ℏ𝐸𝑧
2𝑚𝑒𝜔

)2
2

√

2𝑚𝑒
ℏ2

𝑞2
𝛥 𝜆𝑠𝐿

(

1 − 𝑒−
𝐿
𝜆𝑠

)

(ℏ𝜔 − 2𝐽 )2 + 𝛥2
𝐽𝑠

(

𝜀𝑠𝐹
)3∕2

𝑗𝑒
𝑒
, (40)

𝑅(2)
𝑠𝑡 𝐽 =

⎛

⎜

⎜

⎜

⎝

𝑒ℏ
(

𝑬 ⋅ ℏ𝑘𝐹𝐽
𝜕𝐽
𝜕𝒑

)

𝑚𝑒𝜔

⎞

⎟

⎟

⎟

⎠

2

2
5

√

2𝑚𝑒
ℏ2

𝑞2
𝛥 𝜆𝑠𝐿

(

1 − 𝑒−
𝐿
𝜆𝑠

)

(ℏ𝜔 − 2𝐽 )2 + 𝛥2
𝐽𝑠

(

𝜀𝑠𝐹
)1∕2 𝜀𝐹

𝑗𝑒
𝑒
,

(41)

where we take 𝜀𝑠𝐹 ≫ 𝜀𝐹 and 𝐽𝑠 ≫ 𝐽 for simplicity. The result (39)–
(41) depends both on the parameters of active region and spin source.
Moreover, it is proportional to the electric current 𝑗𝑒. The total 𝑅𝑠𝑡 is
defined as 𝑅 = 𝑅(1)+𝑅(2). Since 𝑅(1) depends only on the parameters of
𝑠𝑡 𝑠𝑡 𝑠𝑡 𝑠𝑡
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Fig. 3. Spin subbands in a helicoidal ferromagnet for 𝜀𝑠𝐹 = 5𝜀𝐹 ,
𝐽
𝜀𝐹

= 0.2, 𝑞
𝑘𝐹

= 0.34.
Three arrows have different length which corresponds to different 𝛥𝜀.

active region it is possible to obtain positive 𝑅𝑠𝑡 by taking appropriate
spin source and current.

It is obvious that for small current 𝑅𝑠𝑡 is negative. The critical elec-
tric current 𝑗𝑐𝑒 is defined as the current at which 𝑅𝑠𝑡 becomes positive,
i.e. 𝑅(2)

𝑠𝑡
(

𝑗𝑐𝑒
)

= 𝑅(1)
𝑠𝑡 , and the wave absorption is exactly compensated

by emission at 𝑗𝑐𝑒 . If 𝜀𝑠𝐹 ≫ 𝜀𝐹 Eqs. (39)–(41) are simplified. Equating
(39)–(41) to the corresponding (36)–(38) we find the critical electric
current:

𝑗𝑐𝑒𝑅 = 𝑗𝑐𝑒𝑚𝑐 =
𝜋
2
𝑒𝑘3𝐹

ℏ𝑘𝑠𝐹
𝑚𝑒

𝐽∕𝜀𝐹
𝐽𝑠∕𝜀𝑠𝐹

𝐿∕𝜆𝑠

1 − 𝑒−
𝐿
𝜆𝑠

, (42)

𝑗𝑐𝑒 𝐽 = 10𝜋
3
𝑒𝑘3𝐹

ℏ𝑘𝑠𝐹
𝑚𝑒

(

𝑘𝐹
𝑘𝑠𝐹

)2 𝐽∕𝜀𝐹
𝐽𝑠∕𝜀𝑠𝐹

𝐿∕𝜆𝑠

1 − 𝑒−
𝐿
𝜆𝑠

. (43)

One can see that the obtained electric current is extremely high for any
reasonable system parameters (for example, if we take 𝜀𝐹 ∼ 1 eV, 𝜀𝑠𝐹 ∼
5𝑒𝑣, 𝐽𝜀𝐹

∼ 𝐽𝑠
𝜀𝑠𝐹

∼ 0.2 and 𝐿 ≪ 𝜆𝑠, we obtain 5 ⋅ 1012 𝐴
cm2 from (42) and

3 ⋅ 1012 𝐴
cm2 from (43)).

The physical meaning of this result is following. There are more
electrons in the lower spin subband of the active region than in the
upper one. These electrons may transit into the upper subband under
the influence of electromagnetic wave if there are free states in the
upper subband corresponding to the same electron momentum. This
leads to the electromagnetic wave absorption which was discussed for
noncollinear magnetic systems in [32] and is not taken into account
directly in papers devoted to electromagnetic wave generation due to
transitions between spin subbands in ferromagnet. Roughly, it is needed
to inject more electrons into the upper spin subsystem than the excess
in the lower one in order to obtain generation of electromagnetic wave.
This excess of the electrons is rather big (∼ 𝑁𝑒

𝐽
𝜀𝐹

∼ 0.2𝑁𝑒 where 𝑁𝑒 is
the total electron concentration in the active region). When calculating
the emission rate, the electron concentration is multiplied by a weight,
i.e. the electron transition probability, which gives (42), (43).

One possible way to overcome this problem is to use a non-metal
ferromagnet such as a magnetic semiconductor as an active region. We
do not consider such possibility hereafter. Thus, in our consideration
the mechanism of electromagnetic wave generation induced by Rashba
coupling needs a very big electric current and therefore is not realistic.

Another way that works for non-collinear ferromagnet is to take into
account that 𝛥𝜀 depends on the quasimomentum 𝑘𝑧 (𝑧 is the helicoid
axis, see (8)). Indeed, the electrons that participate in electromagnetic
wave absorption are mostly concentrated close to the Fermi sphere
𝜀 ≈ 𝜀𝐹 of the active region. On the other hand, the electrons that are
injected from the spin source have the energy up to the Fermi energy
of spin source 𝜀𝑠𝐹 . Therefore they may emit electromagnetic wave with
different frequency when transit between spin subbands than that is
absorbed well (see Figure 3). Thus, the critical current depends on
frequency of electromagnetic wave. For relatively weak spin relaxation
7

processes (small 𝛥) this current may be small enough to be realized in
experiment.

The exact result that is represented in the form of several integrals
may be found in Appendix. Fig. 4 contains the results of numerical
calculations of the critical current with respect to dimensionless wave
frequency 𝛩 = ℏ𝜔

2𝐽 and dimensionless spin relaxation parameter 𝛿 = 𝛥
2𝐽 .

Other parameters are taken as before: 𝜀𝐹 = 1 eV, 𝜀𝑠𝐹 = 5 eV, 𝐽𝜀𝐹
= 𝐽𝑠

𝜀𝑠𝐹
=

0.2, 𝑞 = 1.8 ⋅ 107 cm−1. The spin relaxation length 𝜆𝑠 = 20 nm which
is typical for ferromagnetic metals [46,47], and we take thickness of
the active region 𝐿 = 5 nm. The dependence of 𝑗𝑐𝑒𝑚𝑐 and 𝑗𝑐𝑒 𝐽 on
frequency is shown in Figure 4a and b, correspondingly, for three
different values of 𝛿. It is plotted for ℏ𝜔 > 2𝐽 because for smaller
frequency the critical current is very big, which corresponds to our es-
timations (42), (43). When the frequency increases (starting at 2𝐽 ) the
critical current decreases because the wave absorption by equilibrium
electrons (the leftmost (blue) arrow in Fig. 3) becomes weaker while
the wave emission by the injected non-equilibrium electrons is stronger
(the middle (red) arrow in Fig. 3). The wave absorption by electrons
which are injected into lower subband starts approximately at the steep
decrease of 𝑗𝑐𝑒 . This leads to growth of the critical current with further
increase of the frequency, and finally there is a frequency interval in
which 𝑅𝑠𝑡 is negative for any current. This interval corresponds to
high 𝑘𝑧 at which only electrons injected into lower spin subband exist
(the rightmost (green) arrow in Fig. 3). Contrary to the absorption
of electromagnetic wave by the equilibrium electrons, the absorption
of the wave by injected electrons depends on the electric current 𝑗𝑒
and therefore makes stimulated emission impossible for any electric
current in the corresponding frequency interval. At high frequencies,
𝑅𝑠𝑡 becomes positive, but only for a very large current.

The critical current dependence on 𝛿 for both mechanisms is plotted
in Fig. 4c for ℏ𝜔

2𝐽 = 3 which is close to the minimum of 𝑗𝑐𝑒 . We see that
the critical current decreases linearly and is as small as 105 𝐴

cm2 for 𝛿 =
10−8 which corresponds to spin relaxation time 𝜏𝑠 ∼ 10−6 s. Although it
is hard to imagine such small spin relaxation time, it seems possible to
achieve critical current in pulse mode for very clean ferromagnet with
𝜏𝑠 ∼ 10−9 − 10−10 s.

3.3. Radiation power

Here we perform a simple estimate of the power of stimulated
emission of electromagnetic radiation in a helicoid due to two pos-
sible mechanisms of electron transitions between spin subbands. Our
estimate of critical current and 𝑅𝑠𝑡 in the previous subsection were
performed for the stationary non-equilibrium state (31) that does not
take into account the electromagnetic wave emission. For small devi-
ations of 𝛿𝑁 from 𝛿𝑁∗ determined by (31) we may assume a linear
dependence of 𝑅𝑠𝑡 on 𝛿𝑁 (this is confirmed by the results of previous
work for relatively small current [29]). Using Eq. (24) we may suppose
𝐺 (𝛿𝑁) = 𝐺 (𝛿𝑁∗) 𝛿𝑁

𝛿𝑁∗ . In order to simplify the calculation, we re-write
this equation in terms of 𝑗𝑐𝑒 as

𝐺 (𝛿𝑁) = 𝜉 𝛿𝑁
𝛿𝑁∗

(

𝑗𝑒 − 𝑗𝑐𝑒
)

, (44)

where 𝜉 does not depend on current. Note that we do not discuss the
polarization properties of generated waves here, providing just simple
estimations.

The equations for the photon density 𝑁𝑝 and the non-equilibrium
electron density 𝛿𝑁 are written as

�̇�𝑝 = 𝐺 (𝛿𝑁)𝑁𝑝 − 𝜈𝑝𝑁𝑝, (45)

̇𝛿𝑁 =
𝑗𝑒
𝑒𝐿
𝜂
(

1 − 𝑒−
𝐿
𝜆𝑠

)

− 𝛿𝑁
𝜏𝑠

− 𝐺 (𝛿𝑁)𝑁𝑝, (46)

where Eq. (29) for 𝛿𝑁 is modified in order to take into account electron
transitions with the emission of electromagnetic wave. Using Eq. (44)
one can easily obtain a stationary state with nonzero photon density:

𝑁∗∗
𝑝 = 𝛿𝑁∗ 𝑗𝑒 − 𝑗𝑡ℎ𝑒

𝑐 , (47)

𝜈𝑝𝜏𝑠 𝑗𝑒 − 𝑗𝑒
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Fig. 4. Dependence of critical current (a) 𝑗𝑐𝑒𝑚𝑐 and (b) 𝑗𝑐𝑒 𝐽 on the dimensionless frequency 𝛩 = ℏ𝜔
2𝐽

for the spin relaxation parameter 𝛿 = 𝛥
2𝐽

equal to 10−1 (solid line), 10−3 (dashed
line), and 10−5 (dotted line). The vertical dash-dotted lines correspond to �̃� =

√

1 + 𝛽2𝜅2 which is determined by the maximal energy of the injected electrons. (c) Dependence of
𝑗𝑐𝑒 𝐽 (solid line) and 𝑗𝑐𝑒𝑚𝑐 (dashed line) on 𝛿 at frequency corresponding to 𝛩 = 3.
𝛿𝑁∗∗ = 𝛿𝑁∗ 𝜈𝑝
𝜉
(

𝑗𝑒 − 𝑗𝑐𝑒
) , (48)

where the threshold current is defined as

𝑗𝑡ℎ𝑒 = 𝑗𝑐𝑒 +
𝜈𝑝𝜏𝑠
𝜉
. (49)

For the electric current 𝑗𝑒 < 𝑗𝑡ℎ𝑒 there is no stationary state with
nonzero photon density, while for 𝑗𝑒 > 𝑗𝑡ℎ𝑒 such a stationary state
exists and hence stimulated electromagnetic wave emission is possible.
Obviously, the threshold current 𝑗𝑡ℎ𝑒 is greater than the critical current
𝑗𝑐𝑒 at which the wave emission exceeds the absorption. We have taken
into account the electromagnetic wave emission by the medium in the
form of 𝑅(1)

𝑠𝑡 which does not depend on the electric current. Here we
suppose that the photon losses determined by 𝜈𝑝 are due to the escape
of photons from a resonator that contains the active region (i.e. 𝜈𝑝 is
the inverse photon lifetime in the resonator). Therefore the power of
electromagnetic radiation emitted from the resonator may be estimated
as

𝑃𝑟𝑎𝑑 = ℏ𝜔𝜈𝑝𝑁
∗∗
𝑝 𝑉𝑟𝑒𝑠 = ℏ𝜔

𝜂𝑗𝑒
𝑒𝐿

(

1 − 𝑒−
𝐿
𝜆𝑠

) 𝑗𝑒 − 𝑗𝑡ℎ𝑒
𝑗𝑒 − 𝑗𝑐𝑒

𝑉𝑟𝑒𝑠, (50)

where 𝑉𝑟𝑒𝑠 is the resonator volume. It is seen from (49) and (50) that
the increase of 𝜈𝑝 leads to growth of 𝑗𝑡ℎ𝑒 while 𝑃𝑟𝑎𝑑 does not change.
Therefore it is necessary to make a high quality resonator in order to
obtain stimulated radiation.

In order to estimate the threshold current and radiation power,
we take the same parameters as before. The frequency parameter is
taken as 𝛩 = 3 which corresponds to the wavelength 𝜆 = 1μm, the
spin relaxation time 𝜏𝑠 ∼ 109. We estimate the resonator volume as
𝑉𝑟𝑒𝑠 ∼ 𝜆3. The inverse photon lifetime in the resonator is taken as
𝜈𝑝 ∼ 3 ⋅ 109 s−1 which corresponds to the quality factor 105 if the
resonator length is ∼ 𝜆. For these parameters the critical currents
are 𝑗𝑐𝑒𝑚𝑐 ≈ 2.2 ⋅ 108 𝐴

cm2 , 𝑗
𝑐
𝑒 𝐽 ≈ 9.2 ⋅ 107 𝐴

cm2 , the threshold current is
𝑗𝑡ℎ𝑒𝑚𝑐 ≈ 2.4 ⋅ 108 𝐴

cm2 , 𝑗
𝑡ℎ
𝑒 𝐽 ≈ 9.9 ⋅ 107 𝐴

cm2 . These currents may be achieved
in pulse mode. The radiation power for 𝑗𝑒 = 3 ⋅ 108 𝐴

cm2 which is above
the threshold for both mechanisms is 𝑃𝑚𝑐𝑟𝑎𝑑 ≈ 78 W, 𝑃 𝐽𝑟𝑎𝑑 ≈ 98 W inside
the pulse. The estimated power is rather large which is caused by high
emission rate 𝑅𝑠𝑡 in the considered system. Note that both mechanisms
give similar values of threshold currents and radiation power. Therefore
they should be taken into account simultaneously.

It should be noted here that our model does not take into account
the radiation resistance. Hence very large power is obtained. This is
much greater than the power of ohmic losses. In real experiment the
increase of the radiation power would decrease current and lead the
system to the boundary of generation region. This would keep the
radiation power close to the power of ohmic losses by the order of
value (several milliwatts). However this deserves a separate study and
is beyond the scope of the present work.

4. Conclusion

We theoretically study possible mechanisms of the electromagnetic
wave emission due to the transitions of conductance electrons be-
tween spin subbands in a ferromagnet. Four possible mechanisms are
8

considered. Two of them exist in a uniformly magnetized media: the
Zeeman coupling to the magnetic field of the wave described by (5)
and the Rashba spin–orbit coupling (6) which leads to the interaction
hamiltonian (7) both lead to the mentioned electron transitions. A
non-collinear magnetization distribution brings about two other mech-
anisms: one follows from the minimal coupling which leads to (3), the
other is due to the dependence of the exchange constant 𝐽 in the s-d
exchange hamiltonian (1) on the electron momentum and is described
by the interaction hamiltonian (4).

We compare the four mentioned mechanisms. We show that the
mechanism of electron transitions caused by the magnetic field of the
wave is much weaker than three other mechanisms, and therefore it
could be neglected. The Rashba coupling taken for a simple boundary
of a ferromagnet and a heavy metal such as Pt is shown to give a
sufficiently smaller electron transition probability compared to two
other mechanisms. However for a specially prepared boundary such
as a ferromagnet/Bi/Ag system with a very thin (smaller than the
spin relaxation length) Bi layer the electron transitions mediated by
the Rashba coupling may be the dominant mechanism. The proba-
bilities of the electron transitions due to the minimal coupling and
the dependence of the exchange constant on the electron momentum
in a non-collinearly magnetized medium are of the same order of
value for realistic parameters. Both these probabilities are inversely
proportional to the characteristic scale of the magnetization change
(the spiral period for helical magnetization distribution). Therefore one
should take the magnetic system with sharp magnetization change for
the experiment (holmium is better than manganese silicene).

We consider a simple model of spin injection into a ferromagnet.
We assume that the spin polarized electrons are injected by the electric
current flowing from another ferromagnet with opposite magnetization
direction through a tunneling barrier. (If a non-collinear ferromag-
net is considered, the magnetization direction of the spin source is
antiparallel to the magnetization of the non-collinear ferromagnet at
the surface.) It is shown that the wave absorption in a uniform fer-
romagnet is very strong. This leads to an unrealizable critical electric
current at which the emission rate becomes positive, i.e. the wave
emission exceeds its absorption. The helical magnetization distribution
brings about two main effects. The first one is additional mechanisms
of the electromagnetic wave generation, as mentioned above. These
mechanisms are due to the exchange coupling and therefore are the
strongest among others. The second effect is the dependence of the
energy gap (35) between spin subbands on the electron momentum.
This diminishes the parasitic effect of the intrinsic electromagnetic wave
absorption.

The threshold current (49) of the electromagnetic wave generation,
in addition to the intrinsic wave absorption, takes into account all
external wave losses in the system. We estimate this current for a non-
collinear helicoidal magnetization distribution. We show that both the
minimal coupling and the dependence of the exchange constant on
the electron quasimomentum give similar estimates of the threshold
current and radiation power. Such threshold current may be realized
in an experiment. The corresponding frequency turns out to be approx-
imately three times greater than the gap 2J between spin subbands at
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zero electron momentum. However it follows from our calculations that
the considered generation effect is very demanding on the parameters
of the system. A very clean ferromagnet with the spin relaxation time
𝜏𝑠 ∼ 10−9−10−10 s should be used in order to obtain a realizable critical
urrent.
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ppendix. The exact expressions for the emission rate

Here we provide equations for the emission rates and critical current
or two mechanisms of wave emission in non-collinear ferromagnet
onsidered in current paper. These equations are exact with respect to
𝐽
𝜀𝐹

and 𝐽𝑠
𝜀𝑠𝐹

. However the probability of electron tunneling through the
barrier is the same as in the main body of the paper and is determined
by (25) supposing that the potential barrier height 𝑈 ≫ 𝜀𝐹 , 𝜀𝑠𝐹 .

In order to describe numerous material parameters of the system,
t is convenient to introduce dimensionless parameters 𝜅 =

𝑘𝑠𝐹
𝑘𝐹

=
√

𝜀𝑠𝐹
𝜀𝐹
, 𝜒 = 𝐽𝑠

𝐽 , 𝛽 = 𝑞𝑘𝐹
𝑗 (𝑗 = 2𝑚𝑒

ℏ2
𝐽 ), 𝛿 = 𝛥

2𝐽 , and 𝛩 = ℏ𝜔
2𝐽 . Then 𝑅(1)

𝑠𝑡 and
(2)
𝑠𝑡 are re-written in exact form as

(1)
𝑠𝑡 ℎ𝑒𝑙 = −

𝜋ℏ𝑘3𝐹
(2𝐽 )3

(

𝑒ℏ𝐸𝑧𝑞
2𝑚𝑒

)2
𝐼 (1)ℎ𝑒𝑙 (𝛩) , (A.1)

𝑅(2)
𝑠𝑡 ℎ𝑒𝑙 =

𝜋ℏ𝑘3𝐹
(2𝐽 )3

(

𝑒ℏ𝐸𝑧𝑞
2𝑚𝑒

)2 𝑗𝑒
𝑒

3ℏ3

4𝜋𝑚𝑒𝜀2𝐹

𝜆𝑠
𝐿

(

1 − 𝑒−
𝐿
𝜆𝑠

)

1
𝜅6𝑠 − 1

𝐼 (2)ℎ𝑒𝑙 (𝛩) ,

(A.2)

(1)
𝑠𝑡 𝐽 = −

𝜋ℏ𝑘3𝐹
(2𝐽 )3

(

𝑒ℏ𝑞
𝑚𝑒

(

𝑬 ⋅
ℏ𝑘𝐹
𝐽

𝜕𝐽
𝜕𝒑

))2
𝐼 (1)𝐽 (𝛩) , (A.3)

(2)
𝑠𝑡 𝐽 =

𝜋ℏ𝑘3𝐹
(2𝐽 )3

(

𝑒ℏ𝑞
𝑚𝑒

(

𝑬 ⋅
ℏ𝑘𝐹
𝐽

𝜕𝐽
𝜕𝒑

))2 𝑗𝑒
𝑒

3ℏ3

4𝜋𝑚𝑒𝜀2𝐹

×
𝜆𝑠
𝐿

(

1 − 𝑒−
𝐿
𝜆𝑠

)

1
𝜅6𝑠 − 1

𝐼 (2)𝐽 (𝛩) , (A.4)

where the dimensionless frequency functions 𝐼 (1,2)ℎ𝑒𝑙 (𝛩) , 𝐼 (1,2)𝐽 (𝛩) are
defined in the form of integrals:

𝐼 (1){ℎ𝑒𝑙,𝐽} (𝛩) = ∫

𝑥−

0
𝑑𝑥𝐹{ℎ𝑒𝑙,𝐽} (𝑥,𝛩)

(

1 − 𝑥2 + 𝛾
√

1 + 𝛽2𝑥2
)

(A.5)

−∫

𝑥+

0
𝑑𝑥𝐹{ℎ𝑒𝑙,𝐽} (𝑥,𝛩)

(

1 − 𝑥2 − 𝛾
√

1 + 𝛽2𝑥2
)

,

(2)
{ℎ𝑒𝑙,𝐽} (𝛩) = ∫

𝑥+

0
𝑑𝑥𝐹{ℎ𝑒𝑙,𝐽} (𝑥,𝛩)

(

𝜅2 − 1
)

(

𝑥2 + 𝛾
(
√

1 + 𝛽2𝑥2 + 𝜒
))

+
𝑥𝑠+
𝑑𝑥𝐹{ℎ𝑒𝑙,𝐽} (𝑥,𝛩)

(

𝜅2 − 𝑥2 − 𝛾
√

1 + 𝛽2𝑥2
)

9

∫𝑥+
×
(

𝑥2 + 𝛾
(
√

1 + 𝛽2𝑥2 + 𝜒
))

− ∫

𝑥𝑎−

�̃�
𝑑𝑥𝐹{ℎ𝑒𝑙,𝐽} (𝑥,𝛩)

(

𝜅2 − 𝜇
)

×
(

𝑥2 − 𝛾
(
√

1 + 𝛽2𝑥2 + 𝜒
))

− ∫

𝑥𝑠−

𝑥𝑎−
𝑑𝑥𝐹{ℎ𝑒𝑙,𝐽} (𝑥,𝛩)

×
(

𝜅2 − 𝑥2 + 𝛾
√

1 + 𝛽2𝑥2
)

×
(

𝑥2 − 𝛾
(
√

1 + 𝛽2𝑥2 + 𝜒
))

, (A.6)

ℎ𝑒𝑙 (𝑥,𝛩) = 𝛿

𝛩2
(

1 + 𝛽2𝑥2
)

(

𝛿2 +
(

𝛩 −
√

1 + 𝛽2𝑥2
)2

) , (A.7)

𝐹𝐽 (𝑥,𝛩) = 𝑥2𝐹ℎ𝑒𝑙 (𝑥,𝛩) , (A.8)

he constant 𝜇 in (A.6) is defined as 𝜇 = max (1, 𝛾𝜒) depending on
ystem parameters, and the dimensionless integration limits are the
ollowing:

± =

√

1 +
𝛽2𝛾2

2
∓

√

1 + 𝛽2 +
𝛽4𝛾2

4
, (A.9)

𝑥𝑠± =

√

𝜅2 +
𝛽2𝛾2

2
∓

√

1 + 𝜅2𝛽2 +
𝛽4𝛾2

4
, (A.10)

�̃� =

√

𝛾𝜒 +
𝛽2𝛾2

2
+ 𝛾

√

1 + 𝛽2𝛾𝜒 +
𝛽4𝛾2

4
, (A.11)

𝑥𝑎− = max
(

𝑥−, �̃�
)

. (A.12)

Note that �̃� stands for the smallest 𝑘𝑧 at which the electrons are injected
into the lower spin subband of the active region from the upper spin
subband of the spin source (in the latter, there are no electrons with
the energy corresponding to small 𝑘𝑧 in the lower subband in the active
region; 𝑘𝑧 is not conserved at the boundary). The third integral in the
right-hand part of (A.6) is zero if �̃� > 𝑥−. This condition depends on
the system parameters in a complex way. But is exactly true if 𝜀𝐹 < 𝐽𝑠
(𝛾𝜒 > 1 in dimensionless notation). In (A.6), we take into account
both reduction of the electromagnetic wave absorption by equilibrium
electrons due to the appearance of electrons in the upper spin subband
lead by the electric current and absorption of electromagnetic wave by
the electrons injected into lower spin subband which is stronger than
emission due to the inverse process at high 𝑘𝑧 for which there are no
injected electrons in the upper spin subband.

Applying a condition of positive 𝑅𝑠𝑡 leads us to the critical current
𝑗𝑐𝑒 (𝜃)

𝑐
𝑒 {ℎ𝑒𝑙,𝐽} (𝜃) = 𝑒𝜋

3
𝑘3𝐹

ℏ𝑘𝐹
𝑚𝑒

𝐿∕𝜆𝑠

1 − 𝑒−
𝐿
𝜆𝑠

(

𝜅6𝑠 − 1
)

𝐼 (1){ℎ𝑒𝑙,𝐽} (𝛩)

𝐼 (2){ℎ𝑒𝑙,𝐽} (𝛩)
. (A.13)

ne can see that the exact Eq. (A.13) for the critical current contains
ependence on the wave frequency which is very important if small
arameter 𝛿 (that stands for the spin relaxation) is taken.
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