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Form and width of the spectral line of a Josephson flux-flow oscillator
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The behavior of a Josephson flux-flow oscillator in the presence of both bias current and magnetic field
fluctuations has been studied. To derive the equation for slow phase dynamics in the limit of small noise
intensity the Poincare method has been used. Both the form of spectral line and the linewidth of the flux-flow
oscillator have been derived analytically on the basis of known frequency modulation theory technique, known
limiting cases are considered, limits of their applicability are discussed and appearance of excess noise is
explained. Good coincidence of theoretical description with experimental results has been demonstrated.
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I. INTRODUCTION noise components in bias and control line currents that are
correlated and some that are uncorrelated and lots of detailed
Long Josephson oscillators operating in the flux-flowexperimental study should be performed to understand nature
regimé are presently considered as possible devices for agf this complicated mixture of fluctuations.
plications in superconducting millimeter-wave electrorfics. ~ On the other hand, if we know the parameters of noise
In comparison to single fluxon oscillators they have higher(say, parameters of both natural and technical fluctuatjons
output power, wider bandwidth, and easier tunability, butoUr task is to obtain the linewidth and the form of spectral
they have a wider linewidthof the emitted radiation from line of FFO, and on the basis of the obtained characteristics
the junction. Recent measurements by Koshektal?®  to predict how to improve the noise properties of the oscil-
have indeed shown a linewidth for a Josephson flux-flowator. And here we wogld like to con3|der.th|s “methodologi-
oscillator which is of about one order of magnitude widerCal” part of the analysis of noise properties of FFO. _
than the one derived for a shoflumped Josephson The_alm of the present paper is to give strlctly_ mathemati-
junction®~8 This last property is quite undesirable if one cal derivation of the required fluctuational equation for _slow
wishes to use such devices, for example, as local oscillatoi@®Mponent of the phase that can be done for the most impor-
in radioastronomy receivefsFor concrete applications it is tant case of small noise intensity, and present exact deriva-
important to get a model which adequately describes th&on of the linewidth and the form of spectral line on the
linewidth of the flux-flow oscillator. With such a model one Pasis of methods described in the book by MalakHowe
can hope to control the phenomenon of linewidth broadenindVill assume a certain model of noise sources of FFO bias and
by properly choosing the design parameters of the device. gontrol line Cl_Jrrent fluctua'qons, as well as we WI|| con3|de_r
first attempt in this direction was performed by Golubovthe parametric effect of higher harmonics leading to addi-
et al. and Ustinovet al®1%in terms of a particle model for tional broadening of the spectral line.
the train of fluxons moving in the junction. However, the
authors of Ref. 9 calculated the variance of frequency fluc- Il. BASIC EQUATIONS
tuations(that is quantity difficult to measuydut not a line-
width. Another attempt to derive the linewidth was per-
formed in Ref. 11, but the results obtained are restricted b
the consideration of “particlelike” picture of fluxon-motion
in an infinite junction and the linewidth is expressed in quan- ) 5
tities that are not easily accessible from experiment in a flux- P n aﬁ_ ¢ = p—sin(¢) 1)
flow regime, e.g., average interval between fluxons. In addi- ot? a oxz
tion, magnetic field fluctuations and parametric effects that .
may lead to additional broadening of the linewidth, were notSuPject to the boundary conditions
considered in those papers. Recently, importance of account-
ing magnetic field fluctuations has been proven in Ref. 12. dp(0.t) _ dp(L.1) -1 @)
The task of deriving of the linewidth of FFO may be IX X '
decomposed into two parts: one is more experimental and ) . )
another one is more methodological. One of the difficultiesn this equation space and time have been normalized to the
of the considered problem is absence of understanding ofosephson penetration length and to the inverse plasma
nature of noises of FFO. It is clear, that there are severdrequencyw, *, respectivelyp is the loss parameten is the
different noise sources influencing the FFO: natural wide-normalized dc bias current density, ahids the normalized
band noisegsuch as thermal and shot noisegchnical nar- magnetic field. In accordance with RSJ mddwmie takes the
rowband noises and possibly flicker noise. And all thesdoss parametera=w,/w., where w,=2el./iC, w.
noise sources affect the FFO via fluctuations of both bias=2el.Ry/%, C is the capacitanceRy is the normal state
current and magnetic fiel@ontrol line current Considering  resistance(Ry=V/ly,, whereV is voltage andlg, is the
present FFO desigrts,one can guess that there are somequasiparticle component of the currgt, is the critical cur-

The electrodynamics of a long Josephson junction in the
presence of magnetic field is described by the perturbed sine-
Gordon equation
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rent, =J/J; [l :f'c)J(x)dx' |c=fi)Jc(X)dX, | is the bias hoise(for which power spectral density diverges for-0,
current, | is dimensional length of the junctioh, =1/ . but, nevertheless, calculation of the linewidth may be done in

In general, both bias curremtand magnetic field" (con- this casé®) and in the present paper we neglect technical

trol line current may fluctuate: 7= 7o+ 7e(x,t), T=T¢ fluctuations only to simplify the analysis.

+T(x,t) and usually these fluctuations are supposed to be 1he flux-flow regime is characterized by excitations
wideband noises and are small: fgg0 andl'y+0 vari- which travel on top of a fast rotating background so that the

ances of pg(x,t)/ ng, I'e(x,t)/T’y are much smaller than eﬁicmf nonrl]mefarI:tyi_nthe syzyefm iS_ d/rastically :jeducerd due
unity. Therefore, we will consider the noise souregsx,t)  © fulfilling the following conditions: #/>1 and (or)

ande(x,t) as perturbations that do not affect the current->1- I spite of the presently existing terminology, we should

voltage characteristic, but lead to nonzero width of the spec0t€ that “the flux-flow regime” has nothing to do with mo-

tral line. Following Ref. 8, we suppose that-(x,t) is tion of well-distinguishable flux-quanta: the soliton chain is
Gaussia.n noise with zer.o r'nean val(: (x,t)) = 0 a{nd itg SO dense, that one should speak about transmission of quasi-

spectral density is so wide thaj-(x,t) may be approxi- Im((jaarthve_s |r:ha Il_ong qosdephso? Jurf]cnoln in this case.t I';'
mated by white noise with the correlation function order to derive Ihe linearized equation for slow component o

the phasep(x,t) (that is required for obtaining the spectral

kpTw characteristigswe will first derive it in the case of zero noise
(me(X, ) (X', t"))= ﬁé(x—x’)é(t—t’). (3)  intensity [ 7g(x,t)=Tg(x,t)=0] and later will consider

NTeve™d noise as small perturbation. In Refs. 16 and 17 linear mode

Here and in the followind ) denotes ensemble averagg, theory and perturbative analysis around rotating background

is the Boltzmann constant, afdis the temperature. In com- (¢= ¢+ ¢,y<<1) have been used to derive the current-

parison with Ref. 6, we consider simple RSJ model for cur-voltage characteristic of FFO.

rent fluctuations: usually, at standard working temperature We will use more general Poincare method: obtain the

T=4.2K, pair current fluctuations are much smaller thansolution as the series with respect to the small parameter

quasiparticle-current fluctuations and may be neglectgd: =(a/ 7)2<1. Let us change variables in Eql), 7

=0. Also we do not take into consideration the shot noise=(7/a)t, z=(n/a)x:

contribution that may be neglected if the conditiokgZ

>eV is fulfilled. ) ap P _

The properties of the magnetic field fluctuatidis(x,t) G2 TRz =B esing), (4)
were not studied in the literature. From the present designs of
FFO (Refs. 4,5,13 one can, however, make some ConCIU_WhereB=a2/
. . 7.
sions about nature of these fluctuations. In the present Iay- The steady-state solution of this equation we will find in
outs the base electrode of the long Josephson junction if.  torm B(7) = do(7) + €y (1) + €2o(7) ++ [ bo(7)

employed as a control line. Therefore, wideband bias current > €2 >...1 Substituting this into Ea(4
fluctuations will enter the control line. Moreover, following qwe6\|/vqi5||l(ﬁ7n)c|j trfe|f(azr(g)<|)rder]équation 9 a4)

recent idea of Koshelet@&xperimentally confirmed in Ref.
12), even if the control line is isolated from the junction, 5 5
fluctuating bias current may induce magnetic field, that will ‘9_¢0 ‘9;450_ ‘9_‘150:’8 (5)
affect fluxons. On the other hand, narrowband technical fluc- a7 ar  9z° '

tuations also exist there. So, we can model the control line

fluctuations as follows: TI'g(x,t)=o0ne(X,t)+T(X,t) It is easy to see, that the steady-state solution of this equation
+T'1(x,t), where I'\(x,t) are internal control line pair- IS ¢o(7)=71+yz=(n/a)t+Ix, y=al'ln. To get higher
current fluctuationdwe neglect byl',(x,t)=0, supposing order equations we have to decomposg&i(v,2) + ep1(7,2)

that they are much smaller thampe(x,t)] and(x,t) are  +€dy(r,2)+--] into Taylor expansion. From the structure of
narrowband technical fluctuations. Since there are manthe considered linear recurrent equations we know, that the
compensation techniques that allow to significantly eliminatesteady-state solutiog,(7,z) may be presented in the form
influence of narrowband technical fluctuatidifs;*>we will ~ ¢n(7,2) = wn7+ ¢np(7,2), Whered,(7,2) is periodic non-
also neglect themb'1(x,t)=0. The question about attenua- growing component.

tion factor o via which bias current fluctuations are con- Let us now collect together all linearly growing compo-
verted into magnetic field fluctuations is not trivial and lot of nents w,7 and we will get sifip(7,2)]=siN{wyr+ew;7
theoretical and especially experimental work should be done- €w,7+- -+ yz}+ ed>1p(r)+ez¢2p(r)+---]. Now we can lin-

to answer this question. It is clear, thawill be different for ~ earize sing) as sing)~sin(w;7+ y2)+ ep1y(7,2)COSW;T

different types of FFO’s and depends on the junction geom-+ yz)+ez¢2p(r,z)cos@ﬂ-+ v2)+--+, where wj;=wp+ew;
etry and distribution of currents in the base electrode. Let us- e?w,+--- is the oscillation frequency «fy=1), and
suppose, that the value af is known and later we will wq,w;,...,0n,...,015(7,2),$2p(7,2),...,15(7,2),..., are

discuss howr may be measured. We note, that the approaclunknown functions that we want to obtain. Restricting our-
for linewidth calculatioh* presented below recently was suc- selves by consideration the solution up to the second order
cessfully used for calculation of the linewidth of Cherenkovonly (in principle we can do it up to any order, all equations
FFOZ® This approach is rather universal and allows one tamay be solved recursivelywe get the following equations
take into account almost any noise sources, even flickefor ¢4(7,2), ¢o(7,2):
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Ppy  dpy Py .

o7 B oz et O
Phy Iy Py
92 BT T =—¢1p(7)C0g w7+ y2).  (7)

It is easy to see from Ed6) thatw,;=0 and substituting the
solution in the form

b1p(7,2)= go [A1n €08 ,y7) + By, Sin(w,7)Jcog kn2)

into Eq. (6) one can findA;,, andBy,:

,Blec_(Ezn_wg)ls

(Bwy)?+ (K- w2)?

Apn=(2—8op) ®

Boyl s+ (K- wd)lc

(Bwy)?+ (- w2)?

Byn=—(2—8op) (9)

1 _
le=— f " sin(yz)cogk,2)dz,
L 0

1 (o — — 7
lc==| cogyz)cogk,z)dz,L=—L. (10
LJo o

Substituting this solutiofwherew;= 1+ €?w,) into Eq.(7),
we get

2—6on

y (14 w,)[13+12] W
(B(1+ €2w,)) 2+ [K2— (14 2wy)?]?

From this equatiom, may be found. Analogically teh,,(7)
one can findg, (7).

Combining Eqgs(5)—(7) together we can get equation for

w(T!Z): ¢0(T,Z)+ €¢1(T,Z)+ 62¢2(712)+' -t €n¢n(le)

that is equivalent to the steady-state case of the original

equation (1) up to the nth order and lim_..(7,2)
=¢(7,2):

Y Py

ar  0z°

Py

I

. € Tw —
=/3—esm(wﬁ+72)———f > [Ay,co8 y2)
2L Jon=0

2

~Bu,sin(y2)cogky2)dz- >

X > [Ay,COS2wy7+ yZ)
n=0

+ By, SiN2w,7+ yz)Jcogk,z) — -, (12
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where w;=1+ ew,+ 2w+ + €"w, is supposed to be
known. Here we have presented in the explicit form the term
¢1p(7)COS(;7+y2) and have taken into account that only
zero mode term withm=0 will contribute into linearly
growing component of ¢,(7) =2 oAsm(7)Ccoskn2),
whereas all contributions due to

1

s o
= ], &, [Aancosy2

— By, sin(yz) ]cogk,z)cog k,z)dz,m+0,

will decay with time.
Now, before introducing noise sources, it is convenient to
change variables back:

Ay Iy
— W: n+aQ,—f(x,t)—--,

e

W-f-aﬁ (13)

where f(x,t)="fy(x,t)+f.(x,t), fs(X,t)=sinQit+I'x), »
+aQy,=aQy,

1 o0
fo(x,t)= EHZO [A;,COg 20t +'x)

+ B4, sin(2Q 5t +I'x) Jcog k%), (14

1 (Ll
anztf 52 [A1, cogI'x)— By, sin(I'x) Jcog k,x)dx,
0 n=0

(15
A, andB,, are
aQylc— (K- Q9)ls
Aln_(z_ 50,n) (aQJ)Z_I_(kﬁ_Qg)Z ’ (16)
aQJ|5+(k2_QZ)IC
Bin=— (2~ 8o,) p— (17

(@Q;)2+(K2-03)%
and

_ I'Lsin(I'L)cog 7n)
¢ (TL)?>=(mn)*

_FL[l—cos{FL)cos(wn)]
s (FL)*=(mn)? ’

ko=mn/L, Q;=nw;la

is the oscillation frequency.
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Let us focus on the equation for the second-order frequency corrdétiprthat in original variables, substituting explicit
form of I andlg, may be written as

(2— 8op) (9l a+Q,)(T'L)[1—cogT'L)cog 7n)]

Q2== 2 [(7+aQ,)2+ (Ki— (7l a+Q5)3)?][(TL)?— (mn)?]?

(18

This transcendental equation may be easily solved and th@3) with the right-hand sidéRHS) F[x,t, »(t),['(t)] that is
voltage-current characteristitvVC) of FFO (due to Joseph- a functional of noises 7= 7+ 7:(x,t) and I'=T,
son relation the voltage is proportional ;) O ;= 75/« +T'e(x,t). Itis difficult to solve the corresponding equations
+(, may be found, see Fig. 1, where results of computefor ¢4(x,t),$,(x,t), having periodic RHS with fluctuating
simulation of Eg.(1) and Eq.(18) are presented for phase. To simplify the analysis, let us consider the limiting
=0.2; 0.5,L=5, I'=3. On the other hand, expressing biascase of small noise intensity and decompose the functional
current» via 15 andQ, we arrive to exactly the same ex- F(x,t,#,I") into the functional Taylor expansion, keeping
pression for the current-voltage characteristic derived ironly linear noise terms
Refs. 16 and 17.

F(thanrr):F(X7tv770=F0)

[

(2— 8o,) @Q5(T'L)Y 1—cogT'L)cog 7n)]

- SFE(X,t",mo,I'g)
+ ’ !
7= 003" 2 T, P (=2 PTL P = (an T + f — 5 mext)dt
om0
(19
So, if one needs to obtain the functiéhy(7), Eq. (19) is + f MFF(x,t’)dt’+...,
more useful. If, however, the functidn;(I") (voltage versus ol'g

control line currentis of importance, one can use HA8).  \yhere 5F/57,,5F/ 8T, are functional derivatives. Taking
When necessarte.g., wheny/e is of the order of unity, one ;15 account that

can recourse to the fourth and higher order approximations
and derivelVC with the desired precision. 9Q5( 10, Q
: : 70,10) 9Q5(70,1'0)

The Eq.(13) is the equation for slow component of the rdz%, rgL:"‘af”,
phase in the sense that it is considered in the steady-state 7o 0
limit for t—o. Namely such equation is required to derive N oy gt
different steady-state characteristics, such as correlation Ono(t)/ Smo(t') = o(t—t")
functions and spectra. Now let us consider the case whegnd splitting the deterministic and fluctuational parts of

both bias cuirent and magr_1etic field fluctuatg= 7, WX, 1) = (X, ) + (X, 1), we arrive to Eq(13) for go(x,t)
+toe(xt), T=To+Ie(x,t) [in our model T'e(x.t)  aq it must. For the correction of the phase due to effect of

=o7e(x,t)]. One can apply the same Poincare method wit L~ : . .
the small parametee=(a/5,)? and derive linearized Eq. hquctuatlonsw(x,t) one can derive the following equation:
~ - o~ af(x,t)
2.011 Yyt @y = Y= (gt org- a0, 7E(X,1),

! (20)

where the functiorf (x,t) is given by Eqs(13) and(14) and
rq andrS* are dimensionless dynamical resistances of FFO
and control line, respectively. Following Ref. 14, the linear-
ization with respect to small fluctuations can be done if in the
"o 2 area of evolution of the fluctuating parameter= 7,
+ 7e(x,t) bifurcation points are not located, that corre-
sponds to the previously assumed condition of the smallness
of fluctuations: fluctuations are so small that do not affect the
current-voltage characteristic and, therefore, do not change
qualitative behavior of FFO. Equatigq0) is more general
T T T T T T T T[T T T T T T T[T T T T T[T T T T TTTTT] than its derivation. In spite it is obtained in the second order
10 2.0 3.0 4.0 5.0 approximation, all quantities in RHS of E(RO) are funda-
< mental and improving the approximation up to higher order

FIG. 1. Current-voltage characteristic. Numerical solution of theWill only improve quantitative values afy andrg" and will
sine-Gordon equation is presented by crosses and the second ord@td components with co$Bt, cos4),t, and so on into
approximation is given by solid line far=5, I'=3: curve l:a f(x,t). The dynamical resistances are originated from the
=0.5, curve 2:a=0.2. assumption of small noise: fluctuations feel the system as

a—

0.5

0.0
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linear if their variance is small at the scale of nonlinearity

PHYSICAL REVIEW B55 054504

Let us analyze correlation and spectral properties of ran-

and current fluctuations are linearly converted into voltagedom proces,,(t). This is nonstationary process due to pe-
fluctuations via transfer factor that is the derivative of theriodic time dependence off(x,t) and its autocorre-
current-voltage characteristic at the working point and ardation function{£(t)én(t+ 7)) depends on current time

not connected with “adiabatic approximation”: the noise on
the RHS of Eq(20) is wideband, but the spectrum g{x,t)
depends both on properties gf(x,t) and the differential
operator of the LHS of Eq20). If we will consider the short
junction limit of Eq. (20) (¥,=0,r5"=0), neglect by para-
metric effectsf(x,t)=0 and change variableg="1, 7

= ar4t, we will get the equation for fluctuational component
of voltagev, presented in Ref. 8Eq. (4.34), p. 1086.

The solution of Eq.(20) can be expressed as a Fourier

serie in space:

B0 = 2 An(t)cogknx),

where k,=7m/L. Substituting this anzats into E¢20),
multiplying by cosk.x) and integrating (1/) [, one can get
the following equation foA(t):

Moreover, the produciaf (x,t)/dQ ;] ne(x,t) formally is a
process linearly growing in time and does not belong to
neither second nor third kind random processes that compli-
cates the analysis. Here we can use one effective trick: let
us analyze statistical properties of the process(t)
=[(2= Som)/LI§(r g+ ar T F(X,1) 7e(X,t) coskyX)dx that
belongs to the third kind if the stationary procegqx,t) is
white noise and later we will take derivative ov@r; from

the square root of the intensity of the noigg(t). Using this
procedure we can apply the standard techriitjaad obtain

the correlation function of the second kind of the process

{m(1):

T

J

that will lead to stationary delta-correlated process with

1

T Lo

®,= (LDt D)L,
T*

d?A,, . some intensity, and finally we get the following correlation
T +a gt +K2An=Em(t), (21)  function for the proces§,(7):
where&,,(t) is the projection of the noise along tkg mode D (1) = a?(rg+or§H2Dné(7), (24)
2— 6 L
Em(t)= Lo,mj (rq+or§h) where
0
of(x,t 2kgTw
a— (xY) e(x,t)cogk)dx.  (22) =" (2= So {1+ Hp}, (25)
(99\] RNI Cc
3 2 0 2 2
(2= | 9 \/1 fL ,
Ho=—g7 o VL, Z’o Ay, coskox | + nz,o Byncosk,x | |(cosk,x)2dx (26)
|
Let us note, that effect? of the additional parametric broadening of the main
harmonic at the frequency =) ; due to effect of higher
:ZKBTwp{1+ Hol @27 harmonics(at 2);,3Q ; and so oh
07 RylZ 0 Since for practical FFO's the second harmonic is rather

weak (the output signal is nearly sinusoiglaand since, as it

for Hy=0 completely coincides with the dimensionalized i pe demonstrated below, noise componetitgt) with

noise intensity for a shoflumped Josephson junctiotsee
Ref. 8. The termH,, comes from down conversion of the
second harmonic due to multiplication of co&x+1'x) and
sin(2);t+I'x) by the noise termpe(x,t). This effect, as

proven in Ref. 14, takes place if the power spectral density of

the processnpe(X,t) is so wide that significantly different

from zero at Z); and higher. The term describing the effect

of the first harmonic[ dsin(Q;t+I'X)/dQ ;] pe(xt) will not
give any(additiona) contribution, since the intensity of the
fluctuational processu(t)=sin(Q;t+IxX)ne(xt), D, m(7)
=Dy 8(7)/2 will be constant as function d; and its de-
rivative over() ; will give zero. Therefore, we have classical

m=#0 have rather small effect on fluctuational characteristics
of FFO, we for simplicity of analysis will neglect the term
H, with m#0. Form=0 H, takes the form

oo (7= Qy/ry)?
o 16(CYQJ)3( n—all;)’

(28)

In Fig. 2 we present the plot of the ratio between amplitudes
of the second and first harmoniés /A; (diamond$ and the
excess noisél, (crossesas functions of(); using the ap-
proximate Eq.(18) for «=0.5,L=5, I'=3. It is seen, that
with increase of oscillation frequenc{; the second har-
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6 6 0000000000000000
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FIG. 2. The excess noise intensky, (crosses, curve)2and the
ratio between amplitudes of the second and first harmoljd#\;
(diamonds, curve )Ifor L=5, I'=3, «=0.5. For comparison the

corresponding current-voltage characteristic is giysalid line,
curve 3.

monic amplitude becomes smaller than the first (me ap-
proximation works better in high-frequency limit but

slightly increases at Fiske and Eck steps. The same qualita-

tive behavior demonstrates the excess noise intersity
Unfortunately, the expressiof28), in spite of its general

PHYSICAL REVIEW B 65 054504

function of Ap(t), Ka [ 7]=(An(t)An(t+ 7)) which de-
pends only on time difference

d2KA [7] dKa [7]
g7 ta—g—+tkaKa [7]=0, (30
and should be solved with the following initial conditions:
d%Ku [ 7]
—gz | = alratorg)?Dy/2K, [0]

r=0

=a(rg+or§H)?D,/(2K2).

The correlation function oﬁ}(L,t),Kw[r], may be ex-
pressed as follows:

Kyl7l= 2 Ka[7], (31)

since co4k,L)=1. By the property of the correlation func-
tion, the correlation function of frequency fluctuation&)

=dy(L,t)/dt, K,[7], is the negative second derivative of
dZK‘//[T]

KV[T]:_ dT2 .

(32

One can see, that fom=0 the correlation function

form, is of restricted usefulness and may give incorrect rex, [ 7] diverges, that reflects the only fact, that for the mode

sults at Fiske steps. This is due to the fact tHgtis derived
in the second order approximation only, but it contains th

approximation(18) gives significantly underestimated values
of dynamical resistance, that leads to overestimated values
of Hy. Contrary, at the Eck step, where approximat{@s)
and results of computer simulation nearly coincide, )
gives adequate description of excess noise tegn In the
short junction limitL— 0 one can get the following approxi-
mate expression for the excess noise term

(a?+205)?

Hos= :
% 8a%05(a’+Q5)3

(29

IIl. FORM AND WIDTH OF SPECTRAL LINE OF FFO

In this section we will consider the influence of noise on

broadening of spectral line of the FFO. Following the gen-

eral setup of the probleif,we will consider the output sig-
nal at the end of the junction in the form(L,t)=Q;
+v(t) + Ry cogQ;t+ [v(t)dt], where »(t) are frequency

m=_0 the proces#\(t) is nonstationary. Namely divergence

ff K in our case due to divergence i§ leads to
factor 1f4. As it is seen from Fig. 1, at Fiske steps the L1 ( g LO[T])

finite linewidths of oscillator$# in the opposite case when
K[ 7] is finite the linewidth will be zero. The divergence of
Ka,[7] does not lead to any mathematical difficulties since

we need to obtaifiAy(t)Aq(t+ 7)) that is finite and may be
derived fromK, [ 7], using Eq.(32) and limiting transition
for m—0.

Finally, one can get the following expression for the cor-
relation function of frequency fluctuations

K,[7]=a(rg+or§H)?Dg
1
%12

_e_w+e—m/22 1cos{f(a,km)7]
m=1
o .
—ms”“(“’km)ﬂ”'

oo

(33

where f(a,ky) = f (Km) = VK& — (/2)%. If k2<(al2)?, then

fluctuations, and »(t)dt is supposed to be slow process in ON€ has to change sin and cos to the corresponding hyper-
comparison with co$t,t) (we do not consider here ampli- Polic functions.

tude fluctuationsRy=const, since it is knowtt that they

For stationary and Gaussian frequency fluctuatimisce

lead only to some noisy pedestal and do not influence th&4. (21) is linear with Gaussian noise, the probability distri-

linewidth).

The correlation function of frequency fluctuations may be
derived from Eq.(21) (see, e.g., Ref. 18 Since the slow
component of the effective noigg,(t) in Eq. (21) is station-
ary, form#0 we can write the equation for autocorrelation

bution of A, is also Gaussidnthe form of spectral line may
be written a&*

2

Ry [+=
W, (w)= ﬁ f_x exfg — x(7)]coswrdr, (34
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where x(7) is statistical structural function that is nonnega- 4. [MHz]

tive and even function of: 1.0x10 2
3 ! 3
1+ 1.0410% i
X(n=5| (r=|DK,[£]de. 3 3
SubstitutingK ,[ 7] (33) into (35), we get "M“L;'
1 | aL2 Lonoza
X(T)Zz(rd'f'()'l’dCL)zDo[ T+ e 3
B I'MO‘E_
2a aSif’[f(km)T]} 3
X ——1cog f(k + 1, o
mzzl kﬁq[ E{(m)T] Zf(km) 1.040 U R R AR | R R T oo
0.01 0.10 1.00 10.00
=0. (36) Rq, [0hm]

One can check, that the statistical structural functi®6) FIG. 3. lllustration of the effect of splitting of th_e Iingwid'_[h _for
al <1 andalL>1. Curve 1:aL>1; curve 2: short junction limit;

that we will use for calculation of the linewidth and the form
of spectral line is a smooth finite function and the sum in EqcUrve 3-aL<1.
(36) converges due to the termki{.

For the case of stationary Gaussian fluctuations of fre- A= 2D (41)
quency the linewidth is defined in the following wé: s d¥o

that in dimensional units looks like:

ar
AQ=— . 3
Joexd —x(7)]dr 37 1/2m\2 kT
- o Au=—«—) e (42)
Substituting the structural functiai@6) into (37), we get the 2\ ®g Ry

following final expression for the linewidth: . . .
9 P It should be noted, that this expression is larger than ohe in

by a factor ofn/2 [see formula12) in Ref. 6, we neglected
= — , (38)  byl, andRy=Vy/l4, in their notationg This may be ex-
Joexd —Fy(7)—Fy(7)]dr plained by different definitions of the linewidth: we define it
where as the width of rectangle with the equal squ¥réhat for
Lorentzian form of spectral line should give just by a factor
of m/2 larger value than the definition of the linewidth &t
}, (39) level, that was used in Ref. 6. In the following we will
present all plots of the linewidt{88)—(40) multiplied by the
factor 247 for correct comparison with experiment where the

™

AQ

—aT

e
T+

1
Fi(7)=5(ra+0or5)?Do

1 L2 linewidth is defined at the level
Fa(7)=5(ra+ UrdCL)zDo| az- e 7 If, however, damping coefficient is rather small, there
may be significant deviation of the linewidth of a short junc-
c oy asin f(ky) 7] ] tipn from Eq. (41 dgpengling on values dD, andry (at
X E —|cog f(Kp) 7]+ —F77—— given Dy andr 4 the linewidth will be smaller, and the use
=1 K 21 (Km) of exact formula(38) for F,=0 is necessary.

(40) Now let us consider plots of the exact expression of FFO
linewidth (38)—(40) neglecting by magnetic field fluctuations
In the following we will not recourse to two known lim- r$*=0. Our aim here is to understand how spatial modes
iting cases of very fast and very slow frequency fluctuationsvith m+ 0 influences the linewidth, i.e., how long junction
(Lorentzian and Gaussian form of the spectral)libat per-  differs from the short one. The plots of the linewidth versus
form the exact analysis of the linewidth and the spectral forrdynamical resistance are presented in Fig. 3 in dimensional

on the basis of expressio34)—(40). units (MHz vs Ohm) for practical FFO parametérsL

Let us analyze the linewidth given by expressid&8)— =76.24, «=0.0074 @L<1), «=0.04 (aL>1), T
(40). First, consider the case of a short Josephson junctior4.2 K, Ry=0.04 Ohm, the dynamical resistance R
L—0, rdCL=0, neglecting by parametric effedts,=0. Then  =0.01-100hm; we neglected by the excess noise term

the functionF,(7) disappearsk,(7)=0. If damping coeffi- Hy=0. From Fig. 3 one can see, that below certain threshold
cienta is large(but, of courseg/a>1), one can neglect the curves foraL<1 andalL>1 have the same behavior and
term (e~ *"—1)/a in Egs. (38) and (39) and then well- coincide with the short junction cag42). Above the thresh-

known expression for the linewidth in Lorentzian approxi- old that depends on noise intensi®7) one can see the ef-
mation may be obtained: fect of spatial modes: the curves split and the linewidth for
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N, [MHz]

100.0—

o
T

o

0.1

0.100
Ry, [Ohm]

0.001

FIG. 4. Comparison of experimental and theoretical linewidths
for the parameterd =76.24, T=4.2K, Ry=0.04 Ohm, o=1.
Curve 1 foral>1: «=0.04, R§"=0.04 Ohm; curve 2 foral
<1: a=0.0074,RdCL=0.006 Ohm; solid lines: theory, crosses and
squares: experimental results.

al>1 is greater than fomL<1. With increase of noise
intensity the threshold region located foe=4.2 K between
Ry=0.1—1 Ohm will move to the left. However, it should be
noted that practical range of dynamical resistance lies fro
0.001 to 0.1 Ohm, where the effect of spatial modes can

b
neglected that confirms our previous assumption to negleg

the excess noise terid,, for m#0.
Therefore, it seems that in the practical range of param

eters the linewidth of FFO may be well described by the,

following approximate expression that may be derived fro
Egs. (38)—(40) neglecting by spatial modes with#0 and
by the term ¢ “"—1)/a:

2
[}

0

1
AfFFOZE

kg T

2
) (Rd+aR§L)2Ri(1+ Ho), (43
N

where Hg is given by Eq.(28). Now let us compare the
expression(43) (multiplied by 2/7) with the experimental
results’ see Fig. 4. We again take for simplicityo=0, as
beforeL=76.24,T=4.2K, Ry=0.04 Ohm; foraL<1: «
=0.0074, foraL>1: a=0.04. In Ref. 5R§" has not been
explicitly measured and we have useRS" as fitting param-
eter: putting the noise conversion factor=1 we have cho-
sen RdCL to fit experimental results only at one point fay
—0: for aL<1 R$-=0.0060hm and foraL>1 R§"

m,

PHYSICAL REVIEW B 65 054504

1.0x0'—

1.0x072
®

1.0x10° 1.0:407* 104407

1.0x10°°

1.0x107

FIG. 5. The form of spectral line: comparison of Lorentzian
approximation(dashed linesand exact expression for the spectral
form (solid lineg. Curve 1: Ryj=0.0010hm, curve 2:Ry
=0.01 Ohm, curve 3R3=0.1 Ohm. It is seen, that the correspond-
ing curves coincide.

Let us consider the form of spectral line of the FFO. In
generaf* the spectral line consists of narrow and high spec-
tral peak that finite width is originated by frequency fluctua-
tions (nonstationary phase fluctuationsnd broad and low
edestal due to amplitude fluctuations. If amplitude and fre-
uency fluctuations are correlated but small, there will be
Iso small asymmetric contributions both into the peak and
the pedestal. Since in the frame of the present paper we do
not consider amplitude fluctuations, below we will consider
the form of spectral peak, that may be derived from &4),
substituting statistical structural functidg6).

Since in practically interesting range of parameters the
linewidth is well described by formul@43), we will also
neglect by spatial modes#0 in Eq. (36) and by € 7
—1)/a and will get well-known expression for the Lorentz-
ian form of spectral line

R3  2(Afpeolm)

E(Afppo/’ﬂ')z‘i‘wz, (44)

W, (@)=

the width of this curve at the levelk is given by
2(Afgpo/ ™), whereAfeq is given by Eq.(43). In Fig. 5
plots of spectral form, given by Eq&34), (36) (solid lineg
and the approximatiori44) (dashed lines are presented.
It is seen, that for a small dynamical resistan®y
=0.001 Ohm, that corresponds to plato in FigtHe curves

=0.04 Ohm. One can see good agreement between expreghsolutely coincide. With increase Bf; the exact expression

sion (43) and the results of experiment. More detailed com-
parison of expression88)—(40) and(43) with experimental

slightly deviates from the Lorentzian approximation, but in
all practical range of parametefsp to Ry=0.1 Ohm), for-

excess noise termly will be given elsewhere.
In fact, Fig. 4 and the expressidd3) give an idea how
the noise conversion factar may be measured. If noise

line. For largerRy and noise intensity, the deviation from
Lorentzian form will increase and it is necessary to use ex-
pressiong34), (36). Note, that in Ref. 11 Lorentzian form of

intensity is known, settin®R;<RG" one can get the value spectral line of FFO was predicted using another approach.
(oRGH? from experimentally measured plot of the line- Recently, Lorentzian form of spectral line of FFO has been
width. On the other hand, the vallR$" is independently experimentally observed in wide range of parameters both at
accessible from experiment. Fiske and Eck step$.
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If we would separately consider the case of technical flucheen given. The appearance of excess n@iseomparison
tuations(since these fluctuations are slow and narrowbandvith the short junction linewidth has been explained by
the consideration may be performed in the adiabatic approxipresence of magnetic field fluctuations and by the so-called
mation and in this case the effect of additional parametrigparametric broadening of spectral line due to influence of
broadening of the linewidth would not appear due to the fachigher harmonics. It has been demonstrated that in the prac-
that the spectrum of technical fluctuations is much more nartical range of parameters, in the case when thermal fluctua-
row than the basic frequency of the FFGhe form of the tions dominate, the Lorentzian form of spectral line is real-
spectral line will be Gaussiaffior Gaussian distributed tech- ized, while for larger values of dynamical resistance and
nical fluctuationy and the linewidth will be given as temperature deviations from Lorentzian form may be ob-
V2m(v?), where(»?) is variance of frequency fluctuations. served.

It should be noted, that if one wishes to consider the joint

effect of natural and technical fluctuatiotas they coexist in

real life), one cannot recourse to the Lorentzian and Gaussian ACKNOWLEDGMENTS
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