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Form and width of the spectral line of a Josephson flux-flow oscillator

Andrey L. Pankratov*
Institute for Physics of Microstructures of RAS, Nizhny Novgorod, Russia

~Received 20 May 2001; published 3 January 2002!

The behavior of a Josephson flux-flow oscillator in the presence of both bias current and magnetic field
fluctuations has been studied. To derive the equation for slow phase dynamics in the limit of small noise
intensity the Poincare method has been used. Both the form of spectral line and the linewidth of the flux-flow
oscillator have been derived analytically on the basis of known frequency modulation theory technique, known
limiting cases are considered, limits of their applicability are discussed and appearance of excess noise is
explained. Good coincidence of theoretical description with experimental results has been demonstrated.
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I. INTRODUCTION

Long Josephson oscillators operating in the flux-flo
regime1 are presently considered as possible devices for
plications in superconducting millimeter-wave electronic2

In comparison to single fluxon oscillators they have high
output power, wider bandwidth, and easier tunability, b
they have a wider linewidth3 of the emitted radiation from
the junction. Recent measurements by Kosheletset al.4,5

have indeed shown a linewidth for a Josephson flux-fl
oscillator which is of about one order of magnitude wid
than the one derived for a short~lumped! Josephson
junction.6–8 This last property is quite undesirable if on
wishes to use such devices, for example, as local oscilla
in radioastronomy receivers.2 For concrete applications it i
important to get a model which adequately describes
linewidth of the flux-flow oscillator. With such a model on
can hope to control the phenomenon of linewidth broaden
by properly choosing the design parameters of the devic
first attempt in this direction was performed by Golub
et al. and Ustinovet al.9,10 in terms of a particle model fo
the train of fluxons moving in the junction. However, th
authors of Ref. 9 calculated the variance of frequency fl
tuations~that is quantity difficult to measure! but not a line-
width. Another attempt to derive the linewidth was pe
formed in Ref. 11, but the results obtained are restricted
the consideration of ‘‘particlelike’’ picture of fluxon-motion
in an infinite junction and the linewidth is expressed in qua
tities that are not easily accessible from experiment in a fl
flow regime, e.g., average interval between fluxons. In ad
tion, magnetic field fluctuations and parametric effects t
may lead to additional broadening of the linewidth, were n
considered in those papers. Recently, importance of acco
ing magnetic field fluctuations has been proven in Ref. 1

The task of deriving of the linewidth of FFO may b
decomposed into two parts: one is more experimental
another one is more methodological. One of the difficult
of the considered problem is absence of understandin
nature of noises of FFO. It is clear, that there are sev
different noise sources influencing the FFO: natural wi
band noises~such as thermal and shot noises!, technical nar-
rowband noises and possibly flicker noise. And all the
noise sources affect the FFO via fluctuations of both b
current and magnetic field~control line current!. Considering
present FFO designs,13 one can guess that there are so
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noise components in bias and control line currents that
correlated and some that are uncorrelated and lots of deta
experimental study should be performed to understand na
of this complicated mixture of fluctuations.

On the other hand, if we know the parameters of no
~say, parameters of both natural and technical fluctuatio!,
our task is to obtain the linewidth and the form of spect
line of FFO, and on the basis of the obtained characteris
to predict how to improve the noise properties of the os
lator. And here we would like to consider this ‘‘methodolog
cal’’ part of the analysis of noise properties of FFO.

The aim of the present paper is to give strictly mathem
cal derivation of the required fluctuational equation for slo
component of the phase that can be done for the most im
tant case of small noise intensity, and present exact der
tion of the linewidth and the form of spectral line on th
basis of methods described in the book by Malakhov.14 We
will assume a certain model of noise sources of FFO bias
control line current fluctuations, as well as we will consid
the parametric effect of higher harmonics leading to ad
tional broadening of the spectral line.

II. BASIC EQUATIONS

The electrodynamics of a long Josephson junction in
presence of magnetic field is described by the perturbed s
Gordon equation

]2f

]t2 1a
]f

]t
2

]2f

]x2 5h2sin~f! ~1!

subject to the boundary conditions

]f~0,t !

]x
5

]f~L,t !

]x
5G. ~2!

In this equation space and time have been normalized to
Josephson penetration lengthlJ and to the inverse plasm
frequencyvp

21, respectively,a is the loss parameter,h is the
normalized dc bias current density, andG is the normalized
magnetic field. In accordance with RSJ model8 one takes the
loss parametera5vp /vc , where vp5A2eIc /\C, vc
52eIcRN /\, C is the capacitance,RN is the normal state
resistance~RN5V/I qp, where V is voltage andI qp is the
quasiparticle component of the current!, I c is the critical cur-
©2002 The American Physical Society04-1
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rent, h5J/Jc @I 5*0
l J(x)dx, I c5*0

l Jc(x)dx, I is the bias
current#, l is dimensional length of the junction,L5 l /lJ .

In general, both bias currenth and magnetic fieldG ~con-
trol line current! may fluctuate:h5h01hF(x,t), G5G0
1GF(x,t) and usually these fluctuations are supposed to
wideband noises and are small: forh0Þ0 andG0Þ0 vari-
ances ofhF(x,t)/h0 , GF(x,t)/G0 are much smaller than
unity. Therefore, we will consider the noise sourceshF(x,t)
and GF(x,t) as perturbations that do not affect the curre
voltage characteristic, but lead to nonzero width of the sp
tral line. Following Ref. 8, we suppose thathF(x,t) is
Gaussian noise with zero mean value^hF(x,t)&50 and its
spectral density is so wide thathF(x,t) may be approxi-
mated by white noise with the correlation function

^hF~x,t !hF~x8,t8!&5
2kBTvp

RNI cJclJ
d~x2x8!d~ t2t8!. ~3!

Here and in the followinĝ & denotes ensemble average,kB
is the Boltzmann constant, andT is the temperature. In com
parison with Ref. 6, we consider simple RSJ model for c
rent fluctuations: usually, at standard working temperat
T54.2 K, pair current fluctuations are much smaller th
quasiparticle-current fluctuations and may be neglectedI p
50. Also we do not take into consideration the shot no
contribution that may be neglected if the condition 2kBT
@eV is fulfilled.

The properties of the magnetic field fluctuationsGF(x,t)
were not studied in the literature. From the present design
FFO ~Refs. 4,5,13! one can, however, make some conc
sions about nature of these fluctuations. In the present
outs the base electrode of the long Josephson junctio
employed as a control line. Therefore, wideband bias cur
fluctuations will enter the control line. Moreover, followin
recent idea of Koshelets~experimentally confirmed in Ref
12!, even if the control line is isolated from the junctio
fluctuating bias current may induce magnetic field, that w
affect fluxons. On the other hand, narrowband technical fl
tuations also exist there. So, we can model the control
fluctuations as follows: GF(x,t)5shF(x,t)1G I(x,t)
1GT(x,t), where G I(x,t) are internal control line pair-
current fluctuations@we neglect byG I(x,t)50, supposing
that they are much smaller thanshF(x,t)# andGT(x,t) are
narrowband technical fluctuations. Since there are m
compensation techniques that allow to significantly elimin
influence of narrowband technical fluctuations,8,4,5,12we will
also neglect them:GT(x,t)50. The question about attenua
tion factor s via which bias current fluctuations are co
verted into magnetic field fluctuations is not trivial and lot
theoretical and especially experimental work should be d
to answer this question. It is clear, thats will be different for
different types of FFO’s and depends on the junction geo
etry and distribution of currents in the base electrode. Le
suppose, that the value ofs is known and later we will
discuss hows may be measured. We note, that the appro
for linewidth calculation14 presented below recently was su
cessfully used for calculation of the linewidth of Cherenk
FFO.15 This approach is rather universal and allows one
take into account almost any noise sources, even flic
05450
e

-
c-

-
e

e

of
-
y-
is

nt

l
-
e

y
e

e

-
s

h

o
er

noise~for which power spectral density diverges forv→0,
but, nevertheless, calculation of the linewidth may be done
this case14! and in the present paper we neglect techni
fluctuations only to simplify the analysis.

The flux-flow regime is characterized by excitatio
which travel on top of a fast rotating background so that
effective nonlinearity in the system is drastically reduced d
to fulfilling the following conditions:h/a@1 and ~or! G
@1. In spite of the presently existing terminology, we shou
note that ‘‘the flux-flow regime’’ has nothing to do with mo
tion of well-distinguishable flux-quanta: the soliton chain
so dense, that one should speak about transmission of q
linear waves in a long Josephson junction in this case
order to derive the linearized equation for slow componen
the phasef(x,t) ~that is required for obtaining the spectr
characteristics! we will first derive it in the case of zero nois
intensity @hF(x,t)5GF(x,t)50# and later will consider
noise as small perturbation. In Refs. 16 and 17 linear m
theory and perturbative analysis around rotating backgro
(f5f01c,c!1) have been used to derive the curre
voltage characteristic of FFO.

We will use more general Poincare method: obtain
solution as the series with respect to the small paramete
5(a/h)2!1. Let us change variables in Eq.~1!, t
5(h/a)t, z5(h/a)x:

]2f

]t2 1b
]f

]t
2

]2f

]z2 5b2e sin~f!, ~4!

whereb5a2/h.
The steady-state solution of this equation we will find

the form f(t)5f0(t)1ef1(t)1e2f2(t)1¯@ uf0(t)
u@euf1(t)u@e2uf2(t)u@¯#. Substituting this into Eq.~4!
we will find the zero order equation

]2f0

]t2 1b
]f0

]t
2

]2f0

]z2 5b. ~5!

It is easy to see, that the steady-state solution of this equa
is f0(t)5t1gz5(h/a)t1Gx, g5aG/h. To get higher
order equations we have to decompose sin@f0(t,z)1ef1(t,z)
1e2f2(t,z)1¯# into Taylor expansion. From the structure
the considered linear recurrent equations we know, that
steady-state solutionfn(t,z) may be presented in the form
fn(t,z)5vnt1fnp(t,z), wherefnp(t,z) is periodic non-
growing component.

Let us now collect together all linearly growing comp
nents vnt and we will get sin@f(t,z)#5sin@$v0t1ev1t
1e2v2t1¯1gz%1ef1p(t)1e2f2p(t)1¯#. Now we can lin-
earize sin(f) as sin(f)'sin(vJt1gz)1ef1p(t,z)cos(vJt
1gz)1e2f2p(t,z)cos(vJt1gz)1¯ , where vJ5v01ev1
1e2v21¯ is the oscillation frequency (v051), and
v1 ,v2 ,...,vn ,...,f1p(t,z),f2p(t,z),...,fnp(t,z),..., are
unknown functions that we want to obtain. Restricting o
selves by consideration the solution up to the second o
only ~in principle we can do it up to any order, all equatio
may be solved recursively!, we get the following equations
for f1(t,z), f2(t,z):
4-2
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]2f1

]t2 1b
]f1

]t
2

]2f1

]z2 52sin~vJt1gz!, ~6!

]2f2

]t2 1b
]f2

]t
2

]2f2

]z2 52f1p~t!cos~vJt1gz!. ~7!

It is easy to see from Eq.~6! thatv150 and substituting the
solution in the form

f1p~t,z!5 (
n50

`

@Ā1n cos~vJt!1B̄1n sin~vJt!#cos~ k̄nz!

into Eq. ~6! one can findĀ1n and B̄1n :

Ā1n5~22d0,n!
bvJI C2~ k̄n

22vJ
2!I S

~bvJ!
21~ k̄n

22vJ
2!2

, ~8!

B̄1n52~22d0,n!
bvJI S1~ k̄n

22vJ
2!I C

~bvJ!
21~ k̄n

22vJ
2!2

, ~9!

I S5
1

L̄
E

0

L̄
sin~gz!cos~ k̄nz!dz,

I C5
1

L̄
E

0

L̄
cos~gz!cos~ k̄nz!dz,L̄5

h

a
L. ~10!

Substituting this solution~wherevJ511e2v2! into Eq.~7!,
we get

v252 (
n50

`
22d0,n

2

3F ~11e2v2!@ I S
21I C

2 #

~b~11e2v2!!21@ k̄n
22~11e2v2!2#2G . ~11!

From this equationv2 may be found. Analogically tof1p(t)
one can findf2p(t).

Combining Eqs.~5!–~7! together we can get equation fo
c(t,z)5f0(t,z)1ef1(t,z)1e2f2(t,z)1¯1enfn(t,z)
that is equivalent to the steady-state case of the orig
equation ~1! up to the nth order and limn→`c(t,z)
5f(t,z):

]2c

]t2
1b

]c

]t
2

]2c

]z2

5b2e sin~vJt1gz!2
e2

2L̄
E

0

L̄
(
n50

`

@Ā1n cos~gz!

2B̄1n sin~gz!#cos~ k̄nz!dz2
e2

2

3 (
n50

`

@Ā1n cos~2vJt1gz!

1B̄1n sin~2vJt1gz!#cos~ k̄nz!2¯ , ~12!
05450
al

where vJ511ev11e2v21¯1envn is supposed to be
known. Here we have presented in the explicit form the te
f1p(t)cos(vJt1gz) and have taken into account that on
zero mode term withm50 will contribute into linearly
growing component of f2(t)5(m50

` Ā2m(t)cos(k̄mz),
whereas all contributions due to

1

L̄
E

0

L̄
(
n50

`

@Ā1n cos~gz!

2B̄1n sin~gz!#cos~ k̄nz!cos~ k̄mz!dz,mÞ0,

will decay with time.
Now, before introducing noise sources, it is convenient

change variables back:

]2c

]t2 1a
]c

]t
2

]2c

]x2 5h1aV22 f ~x,t !2¯ , ~13!

where f (x,t)5 f s(x,t)1 f c(x,t), f s(x,t)5sin(VJt1Gx), h
1aV25aVJ ,

f c~x,t !5
1

2 (
n50

`

@A1n cos~2VJt1Gx!

1B1n sin~2VJt1Gx!#cos~knx!, ~14!

aV25
1

L E
0

L 1

2 (
n50

`

@A1n cos~Gx!2B1n sin~Gx!#cos~knx!dx,

~15!

A1n andB1n are

A1n5~22d0,n!
aVJI C2~kn

22VJ
2!I S

~aVJ!
21~kn

22VJ
2!2 , ~16!

B1n52~22d0,n!
aVJI S1~kn

22VJ
2!I C

~aVJ!
21~kn

22VJ
2!2 , ~17!

and

I C5
GL sin~GL !cos~pn!

~GL !22~pn!2 ,

I S5
GL@12cos~GL !cos~pn!#

~GL !22~pn!2 , kn5pn/L, VJ5hvJ /a

is the oscillation frequency.
4-3
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Let us focus on the equation for the second-order frequency correction~11!, that in original variables, substituting explic
form of I C and I S , may be written as

V252 (
n50

`
~22d0,n!~h/a1V2!~GL !2@12cos~GL !cos~pn!#

@~h1aV2!21~kn
22~h/a1V2!2!2#@~GL !22~pn!2#2 . ~18!
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This transcendental equation may be easily solved and
voltage-current characteristic~IVC! of FFO ~due to Joseph-
son relation the voltage is proportional toVJ! VJ5h/a
1V2 may be found, see Fig. 1, where results of compu
simulation of Eq. ~1! and Eq. ~18! are presented fora
50.2; 0.5,L55, G53. On the other hand, expressing bi
currenth via VJ andV2 we arrive to exactly the same ex
pression for the current-voltage characteristic derived
Refs. 16 and 17.

h5aVJ1 (
n50

`
~22d0,n!aVJ~GL !2@12cos~GL !cos~pn!#

@~aVJ!
21~kn

22VJ
2!2#@~GL !22~pn!2#2 .

~19!

So, if one needs to obtain the functionVJ(h), Eq. ~19! is
more useful. If, however, the functionVJ(G) ~voltage versus
control line current! is of importance, one can use Eq.~18!.
When necessary~e.g., whenh/a is of the order of unity!, one
can recourse to the fourth and higher order approximati
and deriveIVC with the desired precision.

The Eq.~13! is the equation for slow component of th
phase in the sense that it is considered in the steady-
limit for t→`. Namely such equation is required to deri
different steady-state characteristics, such as correla
functions and spectra. Now let us consider the case w
both bias current and magnetic field fluctuateh5h0
1hF(x,t), G5G01GF(x,t) @in our model GF(x,t)
5shF(x,t)#. One can apply the same Poincare method w
the small parametere5(a/h0)2 and derive linearized Eq

FIG. 1. Current-voltage characteristic. Numerical solution of
sine-Gordon equation is presented by crosses and the second
approximation is given by solid line forL55, G53: curve 1:a
50.5, curve 2:a50.2.
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~13! with the right-hand side~RHS! F@x,t,h(t),G(t)# that is
a functional of noises h5h01hF(x,t) and G5G0
1GF(x,t). It is difficult to solve the corresponding equation
for f1(x,t),f2(x,t), having periodic RHS with fluctuating
phase. To simplify the analysis, let us consider the limiti
case of small noise intensity and decompose the functio
F(x,t,h,G) into the functional Taylor expansion, keepin
only linear noise terms

F~x,t,h,G!5F~x,t,h0 ,G0!

1E dF~x,t8,h0 ,G0!

dh0
hF~x,t8!dt8

1E dF~x,t8,h0 ,G0!

dG0
GF~x,t8!dt81...,

where dF/dh0 ,dF/dG0 are functional derivatives. Taking
into account that

r d5
]VJ~h0 ,G0!

]h0
, r d

CL5
]VJ~h0 ,G0!

]G0
,

dh0~ t !/dh0~ t8!5d~ t2t8!

and splitting the deterministic and fluctuational parts
c(x,t)5c0(x,t)1c̃(x,t), we arrive to Eq.~13! for c0(x,t)
as it must. For the correction of the phase due to effec
fluctuationsc̃(x,t) one can derive the following equation:

c̃ tt1ac̃ t2c̃xx5~r d1sr d
CL!Fa2

] f ~x,t !

]VJ
GhF~x,t !,

~20!

where the functionf (x,t) is given by Eqs.~13! and~14! and
r d and r d

CL are dimensionless dynamical resistances of F
and control line, respectively. Following Ref. 14, the linea
ization with respect to small fluctuations can be done if in
area of evolution of the fluctuating parameterh5h0
1hF(x,t) bifurcation points are not located, that corr
sponds to the previously assumed condition of the smalln
of fluctuations: fluctuations are so small that do not affect
current-voltage characteristic and, therefore, do not cha
qualitative behavior of FFO. Equation~20! is more general
than its derivation. In spite it is obtained in the second or
approximation, all quantities in RHS of Eq.~20! are funda-
mental and improving the approximation up to higher ord
will only improve quantitative values ofr d andr d

CL and will
add components with cos 3VJ t, cos 4VJ t, and so on into
f (x,t). The dynamical resistances are originated from
assumption of small noise: fluctuations feel the system

rder
4-4
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linear if their variance is small at the scale of nonlinear
and current fluctuations are linearly converted into volta
fluctuations via transfer factor that is the derivative of t
current-voltage characteristic at the working point and
not connected with ‘‘adiabatic approximation’’: the noise
the RHS of Eq.~20! is wideband, but the spectrum ofc̃(x,t)
depends both on properties ofhF(x,t) and the differential
operator of the LHS of Eq.~20!. If we will consider the short
junction limit of Eq. ~20! (c̃xx50,r d

CL50), neglect by para-

metric effects f (x,t)50 and change variablesṽ5c̃ t , t
5ar dt, we will get the equation for fluctuational compone
of voltageṽ, presented in Ref. 8@Eq. ~4.34!, p. 106#.

The solution of Eq.~20! can be expressed as a Four
serie in space:

c̃~x,t !5 (
m50

`

Am~ t !cos~kmx!,

where km5pm/L. Substituting this anzats into Eq.~20!,
multiplying by cos(knx) and integrating (1/L)*0

L , one can get
the following equation forAm(t):

d2Am

dt2
1a

dAm

dt
1km

2 Am5jm~ t !, ~21!

wherejm(t) is the projection of the noise along thekm mode

jm~ t !5
22d0,m

L E
0

L

~r d1sr d
CL!

3Fa2
] f ~x,t !

]VJ
GhF~x,t !cos~kmx!dx. ~22!
d
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y o
t
ct
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Let us analyze correlation and spectral properties of r
dom processjm(t). This is nonstationary process due to p
riodic time dependence off (x,t) and its autocorre-
lation function ^jm(t)jm(t1t)& depends on current timet.
Moreover, the product@] f (x,t)/]VJ#hF(x,t) formally is a
process linearly growing in time and does not belong
neither second nor third kind random processes that com
cates the analysis. Here we can use one effective trick
us analyze statistical properties of the processzm(t)
5@(22d0,m)/L#*0

L(r d1sr d
CL) f (x,t)hF(x,t)cos(kmx)dx that

belongs to the third kind if the stationary processhF(x,t) is
white noise and later we will take derivative overVJ from
the square root of the intensity of the noisezm(t). Using this
procedure we can apply the standard technique14 and obtain
the correlation function of the second kind of the proce
zm(t):

Fz5 lim
T* →`

1

2T* E2T*

T*
^zm~ t !zm~ t1t!&dt, ~23!

that will lead to stationary delta-correlated process w
some intensity, and finally we get the following correlatio
function for the processjm(t):

Fjm~t!5a2~r d1sr d
CL!2Dmd~t!, ~24!

where

Dm5
2kBTvp

RNI c
2 ~22d0,m!$11Hm%, ~25!
Hm5
~22d0,m!

8a2 F ]

]VJ
A1

L E
0

LF S (
n50

`

A1n cosknxD 2

1S (
n50

`

B1n cosknxD 2G ~coskmx!2dxG 2

. ~26!
in

her

tics

es
Let us note, that

D05
2kBTvp

RNI c
2 $11H0% ~27!

for H050 completely coincides with the dimensionalize
noise intensity for a short~lumped! Josephson junction~see
Ref. 8!. The termHm comes from down conversion of th
second harmonic due to multiplication of cos(2VJ t1Gx) and
sin(2VJ t1Gx) by the noise termhF(x,t). This effect, as
proven in Ref. 14, takes place if the power spectral densit
the processhF(x,t) is so wide that significantly differen
from zero at 2VJ and higher. The term describing the effe
of the first harmonic@]sin(VJ t1Gx)/]VJ#hF(x,t) will not
give any~additional! contribution, since the intensity of th
fluctuational processm(t)5sin(VJ t1Gx)hF(x,t), Fmm(t)
5Dm* d(t)/2 will be constant as function ofVJ and its de-
rivative overVJ will give zero. Therefore, we have classic
f

effect14 of the additional parametric broadening of the ma
harmonic at the frequencyv5VJ due to effect of higher
harmonics~at 2VJ,3VJ and so on!.

Since for practical FFO’s the second harmonic is rat
weak~the output signal is nearly sinusoidal!, and since, as it
will be demonstrated below, noise componentsjm(t) with
mÞ0 have rather small effect on fluctuational characteris
of FFO, we for simplicity of analysis will neglect the term
Hm with mÞ0. Form50 H0 takes the form

H05
~h2VJ /r d!2

16~aVJ!
3~h2aVJ!

. ~28!

In Fig. 2 we present the plot of the ratio between amplitud
of the second and first harmonicsA2 /A1 ~diamonds! and the
excess noiseH0 ~crosses! as functions ofVJ using the ap-
proximate Eq.~18! for a50.5, L55, G53. It is seen, that
with increase of oscillation frequencyVJ the second har-
4-5
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monic amplitude becomes smaller than the first one~our ap-
proximation works better in high-frequency limit!, but
slightly increases at Fiske and Eck steps. The same qua
tive behavior demonstrates the excess noise intensityH0 .
Unfortunately, the expression~28!, in spite of its general
form, is of restricted usefulness and may give incorrect
sults at Fiske steps. This is due to the fact thatHm is derived
in the second order approximation only, but it contains
factor 1/r d . As it is seen from Fig. 1, at Fiske steps th
approximation~18! gives significantly underestimated valu
of dynamical resistancer d that leads to overestimated valu
of H0 . Contrary, at the Eck step, where approximation~18!
and results of computer simulation nearly coincide, Eq.~28!
gives adequate description of excess noise termH0 . In the
short junction limitL→0 one can get the following approx
mate expression for the excess noise term

H0s5
~a212VJ

2!2

8a2VJ
4~a21VJ

2!3 . ~29!

III. FORM AND WIDTH OF SPECTRAL LINE OF FFO

In this section we will consider the influence of noise
broadening of spectral line of the FFO. Following the ge
eral setup of the problem,14 we will consider the output sig
nal at the end of the junction in the formv(L,t)5VJ
1n(t)1R0 cos@VJ t1*n(t)dt#, where n(t) are frequency
fluctuations, and*n(t)dt is supposed to be slow process
comparison with cos(VJ t) ~we do not consider here ampl
tude fluctuations,R05const, since it is known14 that they
lead only to some noisy pedestal and do not influence
linewidth!.

The correlation function of frequency fluctuations may
derived from Eq.~21! ~see, e.g., Ref. 18!. Since the slow
component of the effective noisejm(t) in Eq. ~21! is station-
ary, for mÞ0 we can write the equation for autocorrelatio

FIG. 2. The excess noise intensityH0 ~crosses, curve 2! and the
ratio between amplitudes of the second and first harmonicsA2 /A1

~diamonds, curve 1! for L55, G53, a50.5. For comparison the
corresponding current-voltage characteristic is given~solid line,
curve 3!.
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function of Am(t), KAm
@t#5^Am(t)Am(t1t)& which de-

pends only on time differencet:

d2KAm
@t#

dt2 1a
dKAm

@t#

dt
1km

2 KAm
@t#50, ~30!

and should be solved with the following initial conditions:

d2KAm
@t#

dt2 U
r 50

52a~r d1sr d
CL!2Dm/2,KAm

@0#

5a~r d1sr d
CL!2Dm /~2km

2 !.

The correlation function ofc̃(L,t),Kc@t#, may be ex-
pressed as follows:

Kc@t#5 (
m50

`

KAm
@t#, ~31!

since cos2(kmL)51. By the property of the correlation func
tion, the correlation function of frequency fluctuationsn(t)
5dc̃(L,t)/dt, Kn@t#, is the negative second derivative o
Kc@t#:

Kn@t#52
d2Kc@t#

dt2 . ~32!

One can see, that form50 the correlation function
KAm

@t# diverges, that reflects the only fact, that for the mo

m50 the processA0(t) is nonstationary. Namely divergenc
of Kc@t# ~in our case due to divergence ofKA0

@t#! leads to
finite linewidths of oscillators:14 in the opposite case whe
Kc@t# is finite the linewidth will be zero. The divergence o
KA0

@t# does not lead to any mathematical difficulties sin

we need to obtain̂Ȧ0(t)Ȧ0(t1t)& that is finite and may be
derived fromKAm

@t#, using Eq.~32! and limiting transition

for m→0.
Finally, one can get the following expression for the co

relation function of frequency fluctuations

Kn@t#5a~r d1sr d
CL!2D0

3H 1

2
e2at1e2at/2(

m51

` H cos@ f ~a,km!t#

2
a

2 f ~a,km!
sin@ f ~a,km!t#J J , ~33!

where f (a,km)5 f (km)5Akm
2 2(a/2)2. If km

2 ,(a/2)2, then
one has to change sin and cos to the corresponding hy
bolic functions.

For stationary and Gaussian frequency fluctuations@since
Eq. ~21! is linear with Gaussian noise, the probability dist
bution ofAm is also Gaussian#, the form of spectral line may
be written as14

Wv~v!5
R0

2

4p E
2`

1`

exp@2x~t!#cosvtdt, ~34!
4-6
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wherex~t! is statistical structural function that is nonneg
tive and even function oft:

x~t!5
1

2 E2t

1t

~t2uju!Kn@j#dj. ~35!

SubstitutingKn@t# ~33! into ~35!, we get

x~t!5
1

2
~r d1sr d

CL!2D0H t1
e2at21

a
1

aL2

3
2e2at/2

3 (
m51

`
2a

km
2 H cos@ f ~km!t#1

a sin@ f ~km!t#

2 f ~km! J J ,

t>0. ~36!

One can check, that the statistical structural function~36!
that we will use for calculation of the linewidth and the for
of spectral line is a smooth finite function and the sum in E
~36! converges due to the term 1/km

2 .
For the case of stationary Gaussian fluctuations of

quency the linewidth is defined in the following way:14

DV5
p

*0
` exp@2x~t!#dt

. ~37!

Substituting the structural function~36! into ~37!, we get the
following final expression for the linewidth:

DV5
p

*0
` exp@2F1~t!2F2~t!#dt

, ~38!

where

F1~t!5
1

2
~r d1sr d

CL!2D0Ft1
e2at21

a G , ~39!

F2~t!5
1

2
~r d1sr d

CL!2D0H a
L2

3
2e2at/2

3 (
m51

`
2a

km
2 Fcos@ f ~km!t#1

a sin@ f ~km!t#

2 f ~km! G J .

~40!

In the following we will not recourse to two known lim
iting cases of very fast and very slow frequency fluctuatio
~Lorentzian and Gaussian form of the spectral line! but per-
form the exact analysis of the linewidth and the spectral fo
on the basis of expressions~34!–~40!.

Let us analyze the linewidth given by expressions~38!–
~40!. First, consider the case of a short Josephson junc
L→0, r d

CL50, neglecting by parametric effectsHm50. Then
the functionF2(t) disappears:F2(t)50. If damping coeffi-
cienta is large~but, of course,h/a.1!, one can neglect the
term (e2at21)/a in Eqs. ~38! and ~39! and then well-
known expression for the linewidth in Lorentzian appro
mation may be obtained:
05450
.

-

s

n

DVs5
p

2
r d

2D0 , ~41!

that in dimensional units looks like:

D f s5
1

2 S 2p

F0
D 2

Rd
2 kBT

RN
. ~42!

It should be noted, that this expression is larger than one6

by a factor ofp/2 @see formula~12! in Ref. 6, we neglected
by I p andRN5V0 /I qp in their notations#. This may be ex-
plained by different definitions of the linewidth: we define
as the width of rectangle with the equal square,14 that for
Lorentzian form of spectral line should give just by a fact
of p/2 larger value than the definition of the linewidth at1

2

level, that was used in Ref. 6. In the following we wi
present all plots of the linewidth~38!–~40! multiplied by the
factor 2/p for correct comparison with experiment where t
linewidth is defined at the level12.

If, however, damping coefficienta is rather small, there
may be significant deviation of the linewidth of a short jun
tion from Eq. ~41! depending on values ofD0 and r d ~at
given D0 and r d the linewidth will be smaller!, and the use
of exact formula~38! for F250 is necessary.

Now let us consider plots of the exact expression of F
linewidth ~38!–~40! neglecting by magnetic field fluctuation
r d

CL50. Our aim here is to understand how spatial mod
with mÞ0 influences the linewidth, i.e., how long junctio
differs from the short one. The plots of the linewidth vers
dynamical resistance are presented in Fig. 3 in dimensio
units ~MHz vs Ohm! for practical FFO parameters5 L
576.24, a50.0074 (aL,1), a50.04 (aL.1), T
54.2 K, RN50.04 Ohm, the dynamical resistance isRd
50.01210 Ohm; we neglected by the excess noise te
H050. From Fig. 3 one can see, that below certain thresh
curves foraL,1 andaL.1 have the same behavior an
coincide with the short junction case~42!. Above the thresh-
old that depends on noise intensity~27! one can see the ef
fect of spatial modes: the curves split and the linewidth

FIG. 3. Illustration of the effect of splitting of the linewidth fo
aL,1 andaL.1. Curve 1:aL.1; curve 2: short junction limit;
curve 3:aL,1.
4-7
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ANDREY L. PANKRATOV PHYSICAL REVIEW B 65 054504
aL.1 is greater than foraL,1. With increase of noise
intensity the threshold region located forT54.2 K between
Rd50.121 Ohm will move to the left. However, it should b
noted that practical range of dynamical resistance lies fr
0.001 to 0.1 Ohm, where the effect of spatial modes can
neglected that confirms our previous assumption to neg
the excess noise termHm for mÞ0.

Therefore, it seems that in the practical range of para
eters the linewidth of FFO may be well described by t
following approximate expression that may be derived fr
Eqs. ~38!–~40! neglecting by spatial modes withmÞ0 and
by the term (e2at21)/a:

D f FFO5
1

2 S 2p

F0
D 2

~Rd1sRd
CL!2

kBT

RN
~11H0!, ~43!

where H0 is given by Eq.~28!. Now let us compare the
expression~43! ~multiplied by 2/p! with the experimental
results,5 see Fig. 4. We again take for simplicityH050, as
beforeL576.24, T54.2 K, RN50.04 Ohm; foraL,1: a
50.0074, foraL.1: a50.04. In Ref. 5Rd

CL has not been
explicitly measured and we have usedsRd

CL as fitting param-
eter: putting the noise conversion factors51 we have cho-
senRd

CL to fit experimental results only at one point forRd

→0: for aL,1 Rd
CL50.006 Ohm and foraL.1 Rd

CL

50.04 Ohm. One can see good agreement between ex
sion ~43! and the results of experiment. More detailed co
parison of expressions~38!–~40! and~43! with experimental
results obtained in different layouts, taking into account
excess noise termH0 will be given elsewhere.

In fact, Fig. 4 and the expression~43! give an idea how
the noise conversion factors may be measured. If nois
intensity is known, settingRd!Rd

CL one can get the value
(sRd

CL)2 from experimentally measured plot of the lin
width. On the other hand, the valueRd

CL is independently
accessible from experiment.

FIG. 4. Comparison of experimental and theoretical linewid
for the parametersL576.24, T54.2 K, RN50.04 Ohm, s51.
Curve 1 for aL.1: a50.04, Rd

CL50.04 Ohm; curve 2 foraL
,1: a50.0074,Rd

CL50.006 Ohm; solid lines: theory, crosses a
squares: experimental results.
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Let us consider the form of spectral line of the FFO.
general,14 the spectral line consists of narrow and high sp
tral peak that finite width is originated by frequency fluctu
tions ~nonstationary phase fluctuations! and broad and low
pedestal due to amplitude fluctuations. If amplitude and f
quency fluctuations are correlated but small, there will
also small asymmetric contributions both into the peak a
the pedestal. Since in the frame of the present paper we
not consider amplitude fluctuations, below we will consid
the form of spectral peak, that may be derived from Eq.~34!,
substituting statistical structural function~36!.

Since in practically interesting range of parameters
linewidth is well described by formula~43!, we will also
neglect by spatial modesmÞ0 in Eq. ~36! and by (e2at

21)/a and will get well-known expression for the Lorentz
ian form of spectral line

Wv~v!5
R0

2

4p

2~D f FFO/p!

~D f FFO/p!21v2 , ~44!

the width of this curve at the level12 is given by
2(D f FFO/p), whereD f FFO is given by Eq.~43!. In Fig. 5
plots of spectral form, given by Eqs.~34!, ~36! ~solid lines!
and the approximation~44! ~dashed lines! are presented
It is seen, that for a small dynamical resistance~Rd
50.001 Ohm, that corresponds to plato in Fig. 4! the curves
absolutely coincide. With increase ofRd the exact expression
slightly deviates from the Lorentzian approximation, but
all practical range of parameters~up to Rd50.1 Ohm!, for-
mula ~44! gives adequate description of the form of spect
line. For largerRd and noise intensity, the deviation from
Lorentzian form will increase and it is necessary to use
pressions~34!, ~36!. Note, that in Ref. 11 Lorentzian form o
spectral line of FFO was predicted using another approa
Recently, Lorentzian form of spectral line of FFO has be
experimentally observed in wide range of parameters bot
Fiske and Eck steps.12

s
FIG. 5. The form of spectral line: comparison of Lorentzia

approximation~dashed lines! and exact expression for the spectr
form ~solid lines!. Curve 1: Rd50.001 Ohm, curve 2:Rd

50.01 Ohm, curve 3:Rd50.1 Ohm. It is seen, that the correspon
ing curves coincide.
4-8
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If we would separately consider the case of technical flu
tuations~since these fluctuations are slow and narrowban
the consideration may be performed in the adiabatic appro
mation and in this case the effect of additional parametr
broadening of the linewidth would not appear due to the fa
that the spectrum of technical fluctuations is much more na
row than the basic frequency of the FFO!, the form of the
spectral line will be Gaussian~for Gaussian distributed tech-
nical fluctuations! and the linewidth will be given as
A2p^n2&, where^n2& is variance of frequency fluctuations.
It should be noted, that if one wishes to consider the join
effect of natural and technical fluctuations~as they coexist in
real life!, one cannot recourse to the Lorentzian and Gaussi
limiting cases, but the calculation of the spectral form shou
be performed using formula~34!.

IV. CONCLUSIONS

The aim of the present paper is to investigate the influen
of wideband fluctuations of bias current and magnetic fie
on dynamics of FFO. We have derived analytical expressio
both for the form of spectral line of FFO and its width. For
practical range of parameters simple approximate express
of the linewidth, that well fits the experimental results, ha
y
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been given. The appearance of excess noise~in comparison
with the short junction linewidth! has been explained by
presence of magnetic field fluctuations and by the so-cal
parametric broadening of spectral line due to influence
higher harmonics. It has been demonstrated that in the p
tical range of parameters, in the case when thermal fluct
tions dominate, the Lorentzian form of spectral line is rea
ized, while for larger values of dynamical resistance a
temperature deviations from Lorentzian form may be o
served.
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