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Abstract

The energy of a system of 3D dipoles on a 2D orthorhombic lattice is investigated as a function of the rhombic angle.
The possibility of the metastable ferromagnetic state above the main antiferromagnetic state is shown. The mechanisms
of magnetization reversal are analyzed. Nonuniform structures with the long range order of the ferromagnetic type
(vortices and domain walls) on bounded lattices are considered. The conditions when the upper terms of the long wave
expansion of the Fourier images of the dipole sums plays a significant role are shown. © 1999 Elsevier Science B.V. All

rights reserved.
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1. Introduction

For the first time a possibility of existence of the
long range order (LRO) in 3D systems with a
dipole—dipole interaction only was shown by Lat-
tinger and Tisza [1,2]. This prediction was experi-
mentally confirmed for the magnetic properties of
the rare-earth combinations which were named
‘dipole magnetics’ (see e.g., Ref. [3]). The temper-
ature of the phase transition is not higher than 1 K
in these combinations. The reason is that the
exchange interaction is absent and the dipole inter-
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action between the magnetic moments of the rare-
earth atoms is weak. Now there is a possibility of an
experimental investigation of 2D dipole magnetics.
Such a situation may be realized in a system of
single-domain ferromagnetic particles on a non-
magnetic dielectric substrate [4-9]. Nowadays the
technology of preparing an ordered system of
single-domain ferromagnetic particles is rapidly
progressing due to the possibility of using such
systems for super dense record and storage of in-
formation [10]. It should be pointed out that the
expected phase transition temperature for these
systems is essentially higher than in the ‘classical’
3D dipole magnetics [11,12]. An increase of the
critical temperature in the system of single-domain
particles is caused by a large value of their magnetic
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moments, which is proportional to the number of
atoms in the particle.

Thus, a theoretical investigation of a system of
dipoles on a 2D lattice is of significant interest.
The main state of such systems was studied in
[11,13-15]. For the orthorhombic lattices it was
shown that the main state has the LRO of the
ferromagnetic (FM) type, if the rhombic angle is
less than some critical value (¢, ~ 76° [11]). For
greater values of the rhombic angle ¢ > ¢, there is
the main state with LRO of the antiferromagnetic
(AFM) type. It is necessary to make two remarks
here. First, the phases with FM and AFM type of
LRO have different symmetries and the phase
transition between them must be of the first type. It
means that the phase with LRO of the FM type
may be metastable on the lattices with ¢ > ¢..
Second, the FM phase in the bounded systems is
nonuniform and must divide in the domains [16].

Our work is devoted to the investigation of meta-
stable and nonuniform states of a system of mag-
netic dipoles with FM type of LRO on a 2D
orthorhombic lattice. The used model is formulated
and the procedure of transformation of the Fourier
images of 2D dipole sums into rapidly convergent
sums of the McDonald functions (suggested in Ref.
[17]) is described in Section 2. This procedure
allows to obtain an analytical expression for the
energy of the system in the long wave approxima-
tion and make numerical calculation much easier.
In Section 3 the stability of the phase with the FM
type of LRO is investigated in a system with a large
value of the rhombic angle (with the AFM type of
the main state). It was found out that it is meta-
stable on all lattices with ¢ < 90°. Besides, the
stability in the external field is analyzed for all
rhombic angles and it is shown that the magneti-
zation reversal of the system takes place either by
coherent rotation of the magnetic moments in the
plane of the system in the case of large rhombic
angles, or by antiferromagnetic fanning, if ¢ > 44°.
Section 4 is devoted to the investigation of the
nonuniform states of a dipole system on bounded
lattices (vortices of domain walls). The situations
when the highest terms in the long wave expansion
of the Fourier images of the dipole sums which are
formally similar to exchange interaction but have
a pure dipole nature play a significant role are

analyzed. The analytical expression for magneti-
zation distribution in the vortex and domain wall
in the external field near saturation is obtained. It is
shown that in the weak field, when the domain wall
is getting thin, the process of the magnetization
reversal is determined by the wall pinning on the
lattice. All the results are summarized in Section 5.

2. Calculation of the dipole tensor components for
2D orthorhombic lattices

The energy of a system of 3D dipoles with the
magnetic moments M(r;) on a 2D lattice is defined
as

E = %Z sz(ri)Daﬁ(ri,j)Mﬂ(rj)a o, ﬁ =X, )2z (1)
i#j

0 3ri kb
af _ Yap ijhij _
Drij)=—5 ——35—> Frj=r—r; (2)
Fij Fij

where i, j number the lattice site. Here and below,
the repeated indices denote summation. D™ =
D** =0 for the 2D system. The absolute value
of the magnetic moment of the dipole is M,. We
consider the orthorhombic lattices which have
the rhombic angle ¢ and its lattice translation
vector ag = 1 (Fig. 1). Then the diagonal sizes are
a = 2 sin(p/2) and b = 2 cos(¢/2). The energy of the
system in the Fourier representation is

E =iN)Y M, (@)D (g)M4(— q), A3)
. _ 51ﬁ . 3}’1}’11 . N

D*(q) = i;j (Iri,,-|3 Ir,-,j|5> exp(—igr; ), (4)

M,(q) = N~ M,(r) exp(—igr), (3)

where N is the number of lattice sites.

To describe the system, it is necessary to find the
Fourier representation of the components of the
dipole tensor (4). There are several methods to do
this. One is the Ewald method which is used, for
example, in Ref. [18] for calculation of the dipole
sums in 3D magnetics. In our work we have used
the ‘chain’ method suggested by Van der Hoff and
Benson [17] and presented in detail in Ref. [19] for
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Fig. 1. The lattice under study. The coordinate axes are directed
along the rhombus diagonals, a and b are the longitudes of the
diagonals, ¢ is the rhombic angle.

definition of the dipole tensor components if ¢ = 0
in the 3D case. The main idea of the method is to
pick out the chains of the dipoles on the lattice so
that the distance between the nearest sites in them
will be minimal. Formally, as will be shown later,
the double sums in Eq. (4) transform to the rapidly
convergent sums of the McDonald’s functions. The
effectiveness of the method (the number of the series
terms needed to be taken into account) depends on
the choice of the chains or, in other words, on the
sequence of the summation in Eq. (4). Briefly, the
method can be exemplified by the calculation of

D*(q)

Dzz(q) — Z eXp( — iqri,j)' (6)

ey W

Let us choose the chains along the short diagonal
of the rhombus, i.e., along the x axis (Fig. 1). Then
Eq. (6) yields

exp( — ig.am)
2

m#0 (am)3

D) =

+ ) exp(—iq’ibrl)L,,, (7

n#0

exp(— iq,(% — am))
anz an 2 n) 2\ 32 (8)
((5-) +(5))

In Eq. (7) the first term corresponds to the iso-
lated chains and the second one corresponds to the
interaction between them. By use of the representa-
tion of the gamma function

I'(z) = /ff t*~ ! exp( — ur) dt,

0

for L, we can have

2 (3
n ﬁ o 2
Xy exp< - qu<a_2n - am>>
X exp< — <% — am> 2t>dt. )

The sum under the integral is evaluated by the
Poisson summation formula and using the integral
representation of the modified Bessel function of
the second kind of order v (McDonald’s function)
[207:

1 v/2 [foo
m%%h{@ wam—w—ma

For D*(g) one can obtain

cos(q.am)
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Expression (10) for D**(q,, q,) is accurate. The first
term is calculated analytically. The second and the
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third ones are rapidly convergent sums excluding
the points g, = 2nl/a,[ =0, £ 1..., but in these
points the sums should be calculated as the first
term. The simple analytical expressions can be ob-
tained from Eq. (10) in two important cases, which
would be used in Section 4 while analyzing nonuni-
form states. In the case when the magnetic moment
depends only on one coordinate (g, = 0):

203) 8n*  4dng, q;

D*ta,) = a’ 3ab*  ab a

32n? q,b b
~ cos<7>K1<7>. (11)

Here {(3) ~ 1.20205 is the Rieman’s zeta-function.
In this expression only the first term of the third
sum is taken into account, as the McDonald’s func-
tion K(z) exponentially decreases with an increase
in its argument. The expressions for the other com-
ponents of the dipole tensor can be obtained by the
same method.

If the magnetic moment is a slow function of the
coordinates, the long wave approximation of the
dipole tensor can be obtained. The first three terms
in the expansion in terms of ¢ are

47
D*(q) = C§ — a_b|q| + B¥q: + Biq;, (12)
where
_ 2((3) 8n?
Co = a? 3a®b
32n h a
— —1)"=K,| n=h 1
- abzn;1 hgl( ) n 1<nb n>’ ()

1

n=1h=1

or

B — l<1n<@> —14+C
a b

4y Y (—1)”h<Ko<n§hn>

n=1h=1

— néhnK1<néhn>>>. (15)
a a

C ~ 0.577215 is the Euler constant. B}* comes out
from BZ, if we change a<»b. The choice of the form
for By and B5 from the two represented is defined
by the ratio of the rhombus diagonals a, b. The best
form ensures the most rapid convergence of the
series. The expansions in the terms of g for the other
components of the dipole tensor have the same
form. Their expressions coincide in specific cases of
the quadratic and triangular lattices with those
represented in Ref. [11].

In the obtained series C¥* constants define the
magnetization direction of the dipole system in the
uniform state, i.e., corresponds to anisotropy; the
terms of the first order correspond to the magneto-
static terms in the continuum approximation; and,
finally, the terms ~g? are similar to the short-
range exchange interaction, but their presence is
caused by a discrete type of the system. It will be
further referred as ‘pseudoexchange’.

3. Metastable states of the dipole system with the
ferromagnetic type of the long range order. The
instability and magnetization reversal

In this section, we find the stable region of the
phase with the FM type of LRO of the dipole
system on the orthorhombic lattice. The ground
state of the system was analyzed in detail in Ref.
[11] and it was shown that there were our ground
states depending on the rhombic angle. If the angle
is small (¢ < n/3), the dipoles are ordered fer-
romagnetically and the magnetic moment of the
system is oriented along the short diagonal of the
rhombus (the DF phase). In the range of m/3 <
¢ < @ (p. =~ 76°), the DF; ground state existed.
The dipoles are oriented ferromagnetically also, but
the magnetic moment is directed along the long
diagonal of the rhombus. If ¢ = w/3, the energy of
the system is isotropic about the uniform rotation
of the magnetization in the plane of the system, and
the DF and DF, states have equal energy. If
¢. < @ <m/2, the ground state acquires antifer-
romagnetic character (AF). In this state the chains
with the equally directed dipoles are stretched
along the rhombus side, and the dipoles in the
nearest chains are oriented in the opposite direc-
tions along chains. If ¢ = n/2 the microvortex state
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is realized [11]. So, if the rhombic angle is greater
than 76°, the state with the FM type of LRO is not
the main state. In spite of this fact, it can be realized
as the DF state is stable in that case also. Actually,
the AF and DF states have the symmetries which
belong to different groups, and no one is the sub-
group of the other. Therefore, the phase transition
DF; —» AF is of the first type and the DF state can
be metastable. To define the region of metastability,
it is necessary to check the stability of DF, state
about all possible small perturbations.

According to Eq. (3), the energy of the system in
the DF; state is

E, = 3ND”(0)M3. (16)
Let us consider a small perturbation in the form of
M(r) = Moy, + &(r), (17)

where ¢ is small. Due to the constancy of the
modulus of the magnetization vector and the infini-
tesimal nature of ¢&, it is

&~ [{§

2M0

1
=~ éi

2 2
T N ) (18)

Keeping quadratic terms of ¢ in the expression
(3) for E, the change in energy is obtained:

E — Eq = 3N) (D™(q) — D¥(0)&@)E—4)

+ (D*™(g) — D™(0)E:(g)C—9))- (19)

Obviously, the system will be stable in the DF;
state, if for all possible ¢ the following conditions
are fulfilled:

D™(gq) — D*(0) > 0, (20)
D¥(q) — D*(0) > 0. (21)

These conditions are fulfilled, if the minimal
values of D**(q) and D**(q) are greater than D”*(0).
The dipole sums were summed numerically with
the help of the formulas from Section 2 and it was
obtained that the minimal value of D**(g) lies on
the boundary of the Brillouin zone with ¢, =
nt/a cos ¢, g, = 0; the one of D™*(g) is in the center.

In the whole range n/3 < ¢ < m/2 the conditions of
stability are fulfilled. If ¢ = n/3 and ¢ = m/2, the
DF and DF; states have equal energies. If ¢ < /3,
the DF, state becomes unstable about the per-
turbations which transforms it into the DF state. If
@ = n/2, the state with the FM type of LRO is
degenerated about the rotation of magnetization in
the plane of the system (D**(0) = D**(0)) and for the
stability it is necessary that the condition (21) be
fulfilled for the arbitrary choice of the axes Ox an Oy.
Even if it is fulfilled for the DF, state, it is not
fulfilled for the state with the FM type of LRO with
the direction of magnetization along the side of the
square. In this case D**(¢) — D*”(0) < 0([21], Fig. 1)
and DF is unstable about its transformation in the
AF state which has an energy equal to that of the
microvortex state of the square lattice [11].

So the state with the FM type of LRO is stable
for all the possible rhombic angles excluding the
square lattice. If ¢ < ¢, =~ 76°, it corresponds to
the ground state, in the range ¢, < ¢ < m/2 it is
metastable.

Let us consider the question about stability of
a state with the FM type of LRO in an external
magnetic field and, accordingly, about the mode of
the magnetization reversal. In the presence of the
magnetic field H directed against magnetization the
conditions of the stability of the DF, state take the
form:

D*(0) — D*(0) — Mi >0, (22)

0
D¥(gy) — D(0) — - >0, 23)
a MO

While writing these conditions, we already use
the minimal values of D*(q)= D*"(0) and
D*(q) = D**(q.5); q.r 1S the wave vector on the
boundary of the Brillouin zone, where D*(g) has its
minimum. To define the type of the instability, it is
necessary to compare the values of D*(0) and
D**(q,). The minimal one defines the mode of the
magnetization reversal. The dependence of the
critical fields of the magnetization reversal versus
rhombic angle is represented in Fig. 2. If the rhom-
bic angle is large enough (¢ > @.;, where ¢ 4 ~
43.95°), the anisotropy connected with the axis
lying in the plane of the system is weak and the
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Fig. 2. The dependence of the reversal field on the rhombic lattice. The thin line corresponds to the critical field of antiferromagnetic
rotation, the thick one to the field, when the coherent rotation of the magnetic moments takes place in the plane of the system. If ¢ < w/3
these dependencies are presented for the phase DF, if /3 < ¢ < m/2 for the phase DF;.

magnetization reversal takes place by coherent ro-
tation of the magnetic moments in the plane of the
system. With a decrease of the rhombic angle this
anisotropy (Cg* — C%) increases, and the magneti-
zation reversal takes place by antiferromagnetic
fanning of the dipoles through the 0z axis in the
weaker fields.

4. Vortices and domain walls in the dipole system
with a ferromagnetic type of the long range order

The uniform state of a dipole system with the
FM type of LRO cannot be the ground state on
a bounded lattice, due to the large energy of the
demagnetizing fields in this case. To reduce this
energy, the dipole system will tend to be in the
configuration without magnetic charges. It is well
known that the usual exchange magnetics divides
in domains and the width of the domain wall de-
pends on the ratio between the exchange integral
and the constant of anisotropy. In the case of an

easy plane ferromagnet, creation of a vortex struc-
ture is possible [22]. A similar situation must be
realized in the dipole system with the FM type of
LRO. As has been shown in Section 2, the energy of
the dipole system contains the terms similar to
anisotropy and exchange which have, nevertheless,
a magnetostatic nature. From the considerations of
the dimensions it is clear that in the dipole system
the domain wall width is comparable with the size
of the unit cell (see also Ref. [23]). The situation
significantly changes in an external magnetic field
directed perpendicularly to the easy axis. In this
section the analytic expressions are obtained for the
domain wall and vortex in the external field for
a 2D dipole system.

Let us consider the sample of a triangular lattice,
which does not have the anisotropy axis in the
plane. The numerical analysis for the 2D dipoles in
such a sample shows that the ground state has
a vortex structure [16]. We shall obtain analytical
expressions for a configuration of 3D dipoles in an
external magnetic field perpendicular to the sample



A.A. Fraerman, M.V. Sapozhnikov | Journal of Magnetism and Magnetic Materials 192 (1999) 191-200 197

plane. The long-wave asymptotics of the dipole
tensor for the triangular lattice may be represented
as [11]

2

D*(q) = D.(q) + (D (@) — D.()) Z— (24)

D™(g) = D.(q) + (Dy(9) — D.(q) Z— (25)
XV Ay yx

DY) = (Dy(g) ~ D) "3 = D@ (26)

D¥(q) = — D*(q) — D™(q). 27)

Here D, (g) and D) (q) are the eugene values of the
dipole tensor, which depends only on the absolute
value of the wave vector. The eugene vectors of the
dipole tensor in this case are parallel and perpen-
dicular to the wave vector and the eugene values
are marked correspondingly to this eugene vectors.
We have

Dy(q) = —a+cq — big*, (28)
Di(g) = —a+ by, (29)
where a = — C5* = — C¥ ~ 5.517, ¢ =4n//3 ~
7255, by =—BY=—B»~1316 and b, =
By* = BY ~ 0.263. Let us find the configurations
without magnetic charges inside and on the bound-
aries of the sample, i.e., when div M = 0. Then the

functional of the energy takes the form (we assume
M, =1 for simplicity):

3 > b, oM, 2 oM, 2
E= EaJMZ dr + EJ\<< axi + axi
oM.\ * (by — 2b,) ([{OM_\*
+ < o ) )dr 5 \an dr

L J (OM /0x;)(OM-/Ox;1)

2 [r— 7y

drdr, — JHMZ dr,
(30)

where M is the magnetization. The first term in the
expression is similar to the energy of the aniso-
tropy, the second and the third ones are similar to
the exchange energy, the fourth and the fifth ones
are the magnetostatic energy and the energy of the
interaction with the external magnetic field perpen-
dicular to the sample plane. So the problem of

equilibrium configuration of the dipole system re-
duces to the traditional micromagnetic problem.
The specific feature of the considered system is
a small value and anisotropy of the pseudoex-
change terms. Nevertheless, these terms can play
a significant role. Using the polar variables (the
polar axis perpendicular to the plane of the system),
from the conditions of the energy functional min-
imum one can obtain the system of equations for
polar and azimuthal angles (6 and ¢):

— B cos 0 sin 0 — aAO + o sin 0 cos O(Ve)*
+ 7 sin 0 cos O(VO)* — yV(sin* OV0)

csin@[0cosO O 1
H sin 0 — — dr; =0
+Hsin 2 J Oxy, Oxglr—rq] AT
(31)
V(sin* OV¢) = 0, (32)

where o = b,, f = 3a and y = (b; — 2b,). Using the
polar coordinates in the plane of the system
(x =pcos ¢, y=psin @) we find the solution of
Egs. (31) and (32) in a vortex form

T
0="00p) ¢o=7+o. (33)
Eq. (32) is satisfied automatically, from Eq. (31) one
obtains:

o , , 00\
oAO +( f —— | cos 0 sin 0 + y{ sin 0 cos Of —
p op

2
+ <sin2 92—;)) — Hsin 0

csin@f@cos@ 0 1
2

R F— dri=0. (34

Without an external magnetic field there is
a solution: cos 6 = 0, which will be referred to as
a ‘uniform’ vortex. It corresponds to the vortex
configuration which was found numerically in [16].
Its energy in the long wave approximation tends to
infinity due to the divergence of the pseudoex-
change energy in the center of the vortex. Really,
this divergence is cut off on the scale of the lattice
parameter. For Eq. (34) the solutions which do not
have such divergences are known. They are named
cone vortices [22,24]. These configurations can be
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obtained by solving Eq. (34) with the boundary
condition 0(0) = 0. The question about a configura-
tion which yields the minimum of the energy for the
ordinary exchange magnetics, if h =0, was dis-
cussed in Ref. [25]. It was shown that there is
a critical ratio of the exchange constant and an
easy-plane anisotropy constant, which divides the
ground state into the form of an ordinary vortex
and one in the form of a cone vortex. As in a pure
dipole magnet this ratio is small, the main state in
the form of an ordinary vortex is more probable.
Let us show that the situation changes in the ex-
ternal magnetic field near the saturation value.

If h=H/p—1, angle 6§ - 0. Let us substitute
new variables x = p./(1 — h)/ly, f=0//2(1 — h)
(I3 = o/B) in Eq. (34). Neglecting terms of order
~0* and higher, and also the term 0°/x? one
obtains the equation of Gross—Pitaevsky:

g+%g+<l—%>f—f3=0. (35)
Its solution has the form of

f~x, x—0,

fr1—1/2x* x— . (36)

So, neglecting of 03/x?* is well confirmed. Let us
analyze qualitatively the behavior of a vortex in
a disk with a decrease of the external magnetic field.
First, it is necessary to take into account the inte-
gral term in Eq. (34). Actually, its order ~ (1 — h)?,
as the anisotropic pseudoexchange term has the
value ~ (1 — h)*>?. The solution for the cone vortex
in the ferromagnetic disk, taking the magneto-
statics into account, was provided by the method of
the trial functions in Ref. [26]. The solution essen-
tially depends on the ratio of the sample dimension
and the magnetic length. For samples with a small
radius the solution is qualitatively similar, in large
samples the radial domain structure appears. This
situation is more realistic for the considered dipole
magnet, as the magnetic length [, is small. So, the
ground state of an isotropic dipole magnetic of
a disk shape is a vortex configuration. The energy
of such a state is determined by the highest terms of
the long wave approximation. In the first approxi-
mation one may limit oneself by the quadratic
terms which are similar in form to the ordinary

exchange terms of the Geisenberg magnetics.
Moreover, these terms define the distribution of the
magnetization, if the sample is placed in the mag-
netic field with a value near the saturation.

With a deviation of the rhombic angle from 7/3,
an anisotropy appears in the plane of the system. If
the size of the sample is smaller than the longitude
connected with this anisotropy, the ground state
retains a vortex [22,24]. In the opposite case the
magnetic field divides into domains. Their size de-
pends, as usual, on the sample shape and on the
domain wall energy which is defined by the discrete
character of the system. In the external magnetic
field perpendicular to the easy axis (0x), the energy
of the domain wall can be written in the long wave
approximation as

1 XX XX aMx 2
E= EKCO M? + C¥M; + B; ( & >

B oM, 2 d 27
() ol
y f (OM,(y)/0y)(@M,(y1)/0y1)

lr —rq

dx dx; dy dy,

— HJMy dy, (37)

where M is the magnetization. The expressions for

o, C¥, By" and B} are similar to that of D..(q).

If the external magnetic field is near the satura-
tion value H - M, (Cy¥ — Cg), then the difference
between the directions of the magnetization in the
neighboring domains is small. Using the angle vari-
ables 6 and limiting our consideration to the terms
~03, for the equilibrium angle one obtains the
equation

2

020
[ —— +20(0% — 0% =0, (38)
oy

where 0, = 0(o0) =./2(1 — h), h = H/(CY — C%).

It has the solution

y 4By”
0=0,th(=), I= |—Z—5. 39
<l> (€5 — CoI0% )

So, if the value of the external field is near the
saturation, the domain wall width [ is much greater
than the lattice parameter and the long wave
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approximation is valid. Let us note that the finite
width of the domain wall and its energy are caused
by the pseudoexchange interaction (B;* # 0). With
a decrease of the external field the integer term
proportional to (1 — h)? begins to play a role at
first. The order of the second pseudoexchange in-
teraction term in Eq. (37)is (1 — h)*'?. The solution
of the problem of the Néel wall is obtained in Ref.
[27] (see also Ref. [28]) by the method of the trial
functions. It is shown that the integral magnetos-
tatic term gives rise to the power behavior of 0 at
long distances. Nevertheless, the core of the wall
narrows. Without the external magnetic field the
domain wall becomes very sharp and the long wave
approximation is not valid. The right form for the
energy of the domain wall in that case is

E =33 (COMm) + CMEm)

m

+—ZM m(M(m + 1) + M (m — 1))

+ BZ; Z M, (m)(Mym + 1) + M (m — 1))

M
l Z Z m) + My(m + n) (40)
ab m n#0
where
4((3) 3212 < b>
C,=— , B,= ——F+—exp| —7n—|,
a a*./2ab P a

20(3) 32r* [n 1 b
= B. = Sy e
G B e ts) o

The energy of the uniform configuration
(M(m) = Mo, Mym)=0) is E = (B + Cy)Mg/2.
By immediate summation the energy of the dipole
system with an infinitely thin wall

M(m) = My, m <0,
M (m) =
My(m) =

can be obtained. Evidently, the energy of the infi-
nitely thin domain wall is caused by the pseudoex-
change interaction:

E=—B.M2 B,<0. (41)

_MOa m>03

So, a pseudoexchange interaction will determine
the size of the domains in a dipole systems with the
FM type of LRO. It should be noted that, due to
a small thickness of the domain wall, its movement
in the external magnetic field is hindered by pinning
on the lattice. The energy of the pinning in our case
can be estimated from above by calculating the
energy of the intermediate structure appearing
while the domain wall is moving from one site of
the lattice to the other:

M. m) =M, M,m)=0, m<0,
Mx(o) = 09 My(m) = MOa m= 07

M.m)=—M, M,m =0 m>0.

As the energy of the intermediate configuration is
E = C,M}/2, the field of the pinning which must be
exceeded to move the wall is

H i < (B — Ci + C))Mo/2. (42)

Note that the field of the pinning is less than the
saturation field, and the sample is being magnetized
by the domain wall movement.

5. Conclusions

In the present work the metastable and nonuni-
form states of a system of the dipoles with the FM
type of LRO on a 2D rhombic lattice are investi-
gated. It is shown that the state with the FM type of
LRO is stable for any rhombic angle except
@ =90° If p < @, (= 76°), it is the ground state, if
¢. < @ < 90° the metastable one. Let us note that
with ¢ < ¢, there can exist a metastable state with
the AFM type of LRO. The problem on stability of
this state can be investigated as has been done
above. The analysis of the stability of the state with
the FM type of LRO in an external magnetic field
allows to find out the mechanism of the process of
the magnetization reversal of the system. With lar-
ger rhombic angles it takes place by coherent rota-
tion of the dipoles in the plane of the system, if the
angles are small — by antiferromagnetic rotation in
the plane perpendicular to the sample.

The nonuniform states of the dipole system,
which must exist on bounded lattices were investi-
gated in the long wave limit. The zero term of the
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energy expansion in terms of the wave vector de-
fines the anisotropy of the system, the linear term
corresponds to the magnetostatic interaction of the
dipoles in the continuous approximation, the quad-
ratic term is the pseudoexchange interaction,
caused by the discrete character of the lattice. It is
shown that the energy of the nonuniform config-
urations of the system depends on a pseudoex-
change interaction. In the specific cases (for
example, in the external magnetic field, perpendicu-
lar to the easy axis) the quadratic term of the
expansion largely affects the dipole configuration.
For example, appearance of the state with a cone
vortex on triangular lattice and the finite width of
the domain wall in the external field in anisotropic
systems are caused by the pseudoexchange interac-
tion.

Acknowledgements

The authors acknowledge many helpful dis-
cussions with A.S. Melnikov and I.D. Tokman. The
work was supported by the Russian Foundation
for Fundamental Research (N59-02-05388a, N98§-
02-16183).

References

[1] J.M. Lattinger, L. Tisza, Phys. Rev. 70 (1946) 954.

[2] J.M. Lattinger, L. Tisza, Phys. Rev. 72 (1947) 257.

[3] A.G. Anders, C.V. Volotzky, C.V. Startzev et al., Fiz. Niz.
Temp. 21 (1995) 52 Russian.

[4] G.A. Gibson, S. Schultz, J. Appl. Phys. 73 (1993) 4516.

[5] A.D. Kent, S. von Molnar, S. Gider, D.D. Awschalom, J.
Appl. Phys. 76 (1994) 6656.
[6] E. Olive, P. Molho, J.L. Porteseil, J. Magn. Magn. Mater.
140 (1995) 1885.
[71 S. Gider, J. Shi, D.D. Awschalom et al., Appl. Phys. Lett.
69 (1996) 3269.
[8] G.A. Takzey, L.P. Gunko, LI. Sych et al., Pis‘'ma Zh. Exp.
Teor. Fiz. 63 (1996) 959.
[9] A. Saguwara, M.R. Scheinfein, Phys. Rev. B 56 (1997)
R8499.
[10] Abstracts of 41st Annual Conf. on Magnetism and Mag-
netic Materials, Atlanta, Georgia, USA, 1996, pp. 208-211.
[11] V.M. Rosenbaum, V.M. Ogenko, A.A. Chuiko, Uspekhi
Fiz. Nauk 161 (1991) 79.
[12] S. Morup, Europhys, Lett. 28 (1994) 671.
[13] U.M. Malozovsky, V.M. Rosenbaum, Zh. Exp. Teor. Fiz.
98 (1990) 265.
[14] V.M. Rosenbaum, Zh. Exp. Teor. Fiz. 99 (1991) 1836.
[15] V.M. Rosenbaum, Zh. Exp. Teor. Fiz. 111 (1997) 669.
[16] P.IL Belobrov, V.A. Voevodin, V.A. Ignatchenko, 88 (1985)
889.
[17] M.B.E. Van der Hoff, G.C. Benson, Can. J. Phys. 31 (1953)
1087.
[18] A. Aharony, M.E. Fisher, Phys. Rev. B 8 (1973) 3323.
[19] CK. Purvis, P.L. Taylor, Phys. Rev. B 26 (1982) 4547.
[20] M. Abramowitz, I.A. Stegun, Handbook of Mathematical
Functions, Dover, New York, 1975.
[21] V.M. Rosenbaum, E.V. Artamonova, V.M. Ogenko, Ukr.
Fiz. Zh. 33 (1988) 625.
[22] A.M. Kosevich, M.P. Voronov, I.V. Manzhos, Zh. Exp.
Teor. Fiz. 52 (1983) 148.
[23] A. Abragam, M. Goldman, Nuclear Magnetism: Order
and Disorder, Vol. 2, Clarendon Press, Oxford, 1982.
[24] B.A. Ivanov, D.D. Sheka, Fiz. Niz. Temp. 21 (1995) 1148.
[25] A.R. Volkel, G.M. Wysin, F.G. Mertew et al., Phys. Rev.
B 50 (1994) 12711.
[26] Y. Ishii, Y. Nakazava, J. Appl. Phys. 81 (1996) 1847.
[27] H.D. Dietze, H.Z. Thomas, Physik 28 (1961) 523.
[28] A. Hubert, Theorie der Domanienwande in Geordneten
Medien, Springer, Berlin, 1974.



