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Two-dimensional skyrmion lattice in a nanopatterned magnetic film

M. V. Sapozhnikov and O. L. Ermolaeva
Institute for Physics of Microstructures RAS, Nizhny Novgorod 603950, GSP-105, Russia

and N. I. Lobachevskii State University, Nizhny Novgorod 603950, Russia
(Received 4 April 2014; revised manuscript received 18 December 2014; published 20 January 2015)

We study the possibility of a two-dimensional (2D) skyrmion crystal stabilization in a magnetic film with
perpendicular anisotropy in the absence of Dzyaloshinskii-Moriya interaction by creating the regular array of
blind holes or stubs. By micromagnetic simulation we demonstrate that skyrmions can be stable in the patterned
films with the parameters of ordinary materials such as CoPt, FePt, or FePd. The skyrmion lattices can be
initialized in the system by simple magnetization in the uniform external magnetic field. At the zero external
field the skyrmion helicity depends on the geometry of the blind hole or stub but also can be tuned by applying
the field. The suggested method makes it possible to create dense enough (with the period less than 100 nm)
skyrmion lattices which are important to carry out transport measurements.
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Recently it was theoretically predicted that magnetic states
carrying topological charge can be stable in the chiral magnets
without the assistance of an external magnetic field [1]. Very
soon after that the prediction was experimentally verified by
the observation of such structures by neutron scattering (in
MnSi) [2], by Lorentz transmission electron microscopy (in
Fe0.5Co0.5Si) [3], and by spin-resolved scanning tunneling
microscopy (hexagonal Fe monolayer) [4]. Since these pio-
neering works such magnetic structures are usually referred
to as “magnetic skyrmions.” The rising interest to magnetic
skyrmions is caused by discovering their unusual spin-
electronic properties, such as the topological Hall effect [5,6],
current-driven motion in ultralow currents [7] accompanied by
skyrmion Hall effect [8], or flexomagnetoelectric effects [9]
which can be exploited in spintronic devices. The skyrmion
lattice is stabilized by Dzyaloshinskii-Moriya (DM) inter-
action [10,11] in these materials. The problem is that the
relativistic DM interaction is commonly weak so the magnetic
skyrmion lattice can be stable within a narrow temperature and
magnetic field range in some noncentrosymmetric materials
(see Table 1 from Ref. [12]).

In principle it is known that the existence of skyrmionlike
magnetization distribution is possible in materials without the
DM interaction. As an example, magnetic bubble domains in
YIG film being in the external field [12] or domains obtained
by heat-assisted magnetic recording in FePd films [13] can be
mentioned. Although bubble domains in YIG are topologically
magnetic skyrmions, their large size leads to low average
skyrmion density defined as [2]

φ = 1

4π
n · ∂n

∂x
× ∂n

∂y
, (1)

n = M(r)/|M(r)| is the orientation of the magnetization. Also
the nonconductive nature of the material makes it impossible
to observe such a system of transport effects. So at the moment
there is no method of creating skyrmion arrays in conventional
conductive ferromagnetic materials with a skyrmion charge
density sufficient to experimentally observe unique transport
effects caused by the skyrmion topology.

Recently they suggested creating a 2D skyrmion lattice
in CoPt film with perpendicular anisotropy by placing Co

particles on its surface and corroborated this approach by
micromagnetic simulation [14]. The idea was that the magnetic
vortex within the Co particles will stabilize skyrmionlike
magnetization distribution in the CoPt film below it due to
exchange interaction between the film and the particles. This
method involves the lithography of the asymmetric cobalt dots
such as edge-cut circular disks or polygonal dots. Such shape
of the dots is necessary to have the possibility that all of
the magnetic vortices in the particles get the same chirality
during the magnetization in the uniform external field. In
the actual experiments the size of such particles is 1–2 μm
[15,16]. According to our own experience the smallest size
of the triangular particles (arranged in the 2D lattice) suitable
for obtaining the vortices with the same chirality is about
500 nm [17]. This limits the density of the 2D skyrmion lattice
in such a system by approximately 1 μm−2.

In this paper we want to suggest an alternative method
of nanopatterning of the magnetic film with perpendicular
anisotropy (CoPt, FePt, FePd) which will enable to create 2D
skyrmion lattice with more than 100 times higher skyrmion
charge density. Wherein the skyrmion lattice can be initialized
by the simple magnetizing in the uniform magnetic field. Our
idea is that it is possible to prevent skyrmion collapse (radial
instability) and runout (elliptic instability) by periodically
changing the film thickness. If the magnetic bubble (topologi-
cally it is a magnetic skyrmion) is initially in the thin area of the
film its runout will cause not only the increase of the domain
wall length (like in the case of flat film) but the domain wall
height (i.e., size in the normal to film direction) will increase
as well as the domain wall shifts into the region where the film
has a greater thickness. This will lead to the additional increase
of free energy of the system and so runout can be prevented.
In the case of very thin perpendicular magnetic films, those
thickness are less than some critical value [18], the magnetic
bubble is also unstable but has the tendency to squeeze and
collapses. In this case the local thickening of the film located
in the middle of the bubble domain can stop the squeeze due to
the same mechanism. So the regular array of the circular blind
holes or stubs can play the role of a matrix which can stabilize
the skyrmion lattice (bubble domains) without need of DM
interaction. The suggested method of the nanopatterning has
the evident advantages.
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FIG. 1. (Color online) The geometry of the proposed skyrmion
system. (a) The regular array of the blind holes, arrows denote the
direction of the magnetization inside and outside the blind holes in the
presence of the skyrmion lattice. (b) The cross section of the blind
hole, the geometry parameters used in micromagnetic simulations
are shown: h1 is the thickness of the initial film, D is the diameter of
the blind hole, h2 is the thickness of its bottom, and h3 is its depth.
(c) The regular array of the stubs. (d) Corresponding geometrical
parameters.

(1) It is possible to lithography the lattice of holes or
stubs with diameters less than 20 nm [19], this can essentially
increase the density of the artificial skyrmion lattice.

(2) The skyrmion lattice can be formed easily by magne-
tizing the sample in the external uniform field, it is possible to
manipulate the density and even the symmetry of the skyrmion
lattice in the same sample by changing the value of the applied
field. Wherein the obtained skyrmion lattices remain stable at
the zero field.

(3) It is possible to obtain the skyrmions with different
helicity by changing the geometry of the blind hole or stub.

(4) It is possible to manipulate the skyrmion parameters
such as diameter or helicity by applying the external field.

We verify the suggested approach with micromagnetic
simulations utilizing the OOMMF code [20] based on a numer-
ical solution of the system of Landau-Lifshitz-Gilbert (LLG)
equations for the magnetization of the system. The geometry
of the simulated system is represented in Fig. 1. Actually it is
the regular hexagonal or square array of the blind holes. They
are characterized by diameter and thickness parameters h1, h2,
and h3. In most of the calculations h1 = h2 + h3, so h1 is the
film thickness, h2 is the blind hole bottom thickness, and h3 is
its depth. The parameters of the stub are similar. It is known
that depending on the chemical composition the material
parameters of the magnetic perpendicular medium are varied
within certain limits: Ms = 5 × 105/13 × 105 A/m, A =
10−11/1.5 × 10−11 J/m, and Ku = 4 × 105/107J/m3 (it is the
saturated magnetization, exchange coefficient, and uniaxial
anisotropy) [14,21–26]. For our simulations we used values
within this range. At the first stage we study the possibility
of the single skyrmion stabilization in the blind holes of
different geometries “drilled” in the center of a 300 × 300
nm fragment of the 20 nm thick plane film. A grid size is
2.5 × 2.5 × 2.5 nm3. A starting point for the calculations is
uniformly magnetized film (Mz = −Ms) with the blind hole
bottom magnetized oppositely (Mz = Ms) and after that the
system relaxes in a stationary state. The phase diagram at zero
external field for Ms = 8 × 105 A/m, A = 10−11 J/m, and
Ku = 5 × 106J/m3 is represented in Fig. 2(a). In the case of
the deep blind hole the skyrmion has helicity γ = π (or γ = 0

FIG. 2. (a) Calculated phase diagram for the skyrmion stability in
the blind hole (see Fig. 1 for the geometry parameters, h1 = 20 nm,
h1 = h2 + h3). The stars shows the skyrmion with the helicity γ = π ,
solid circles represent skyrmion with the helicity γ < π , and open
circles are for the skyrmion instability. (b) The dependence of the
helicity of the skyrmion in the blind hole (h1 = 30 nm, h2 = 5 nm,
h3 = 25 nm, and D = 40 nm) on the external magnetic field. (c)
The external field range when the skyrmion is stable in the conical
blind hole depending on the cone slope, h1 = 20 nm, h3 = 15 nm,
the average cone diameter is 50 nm.

for the opposite initial orientation of the magnetization). In
the case of the shallow blind hole the skyrmion obtains some
azimuthal component. If the blind hole is too shallow (h3 =
5 nm) or narrow (D = 25 nm) the skyrmion has elliptical
instability and the reversed domain spreads over the film. It is
necessary to mention that the magnetic moment distribution of
similar skyrmionlike structure can be obtained in the magnetic
nanodisk with perpendicular anisotropy whose size is slightly
larger than single-domain size. In this case the bubble domain
is stabilized due to the small enough size of the particle, there
is no room to form labyrinth structure [27].

To understand how precise technology must be in terms
of manufacturing of blind holes we check the stability of the
skyrmions in the holes with inclined edges. The results for
the blind conical holes are represented in Fig. 2(c) for the
20 nm thick film with material parameters same as above. It
demonstrates that skyrmions stay stable at zero external fields
up to high enough inclination angles while the corresponding
range of the external fields gradually narrows.

Using the same procedure we study the stability of the
skyrmion pinned by a cylindrical stub on the surface of a 5 nm
thick film. This thickness is less than the critical value (8 nm
for the used material parameters) when the magnetic bubble
topologically similar to the skyrmion is radially unstable
(i.e., collapses) even at the zero external field [18]. So a
skyrmionlike nucleus collapses in the flat film or if the stub
diameter or height is too small [Fig. 3(b)]. If the stub is higher
the initial skyrmion nucleus shrinks while its diameter reaches
the diameter of the stub. After that it remains stable.
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FIG. 3. (Color online) (a) The magnetization curve in the perpen-
dicular magnetic field for the 300 nm × 300 nm × 30 nm plate with
the stub (D = 50 nm, h3 = 25 nm) in the center. Left graph axis
shows the absolute value of the magnetic moment of the system. The
thick parts of the curve correspond to the skyrmionlike magnetization
distribution in the stub. (b) Calculated phase diagram for the skyrmion
stability of the stub (see Fig. 1 for the geometry parameters, h1 = 20
nm, h1 = h2 + h3). The stars shows the skyrmion with the helicity
γ = π , solid circles represent skyrmion with the helicity γ < π , and
open circles are for the skyrmion instability. (c) The dependence of the
skyrmion helicity in the stub (h1 = 30 nm, h2 = 5 nm) on the relative
position of the film and stub in the general case (h1 �= h2 + h3) for
the zero external field. (d) The scheme of the demagnetizing fields
and magnetization distribution for different geometries of the system.

The hysteresis magnetization curve of the system is repre-
sented in Fig. 3(a). The skyrmion stays stable in the wide range
of the external field values. It becomes radially unstable at the
field μ0H = 740 mT when its core collapses and becomes
elliptically unstable at μ0H = −70 mT, causing magnetiza-
tion reversal in the whole system. The magnetic moment M
associated with the skyrmion core is approximately equal in
this case to 2 × 10−16 A m2. This allows us to understand the
possible influence of the thermal fluctuations on the skyrmion
stability at room temperature. The energy barrier responsible
for the stability of the skyrmion at zero field can be estimated
as �E = μ0HM, where μ0H ∼ 10−1 T is a field of the
skyrmion instability. So the corresponding energy is ∼10−17 J
and the corresponding temperature 106 K which is more than
three orders higher than the Curie temperature of the material
and more than three orders higher than room temperature. So
the influence of the temperature fluctuations on the skyrmion
stability is negligible in the system.

The helicity of the skyrmion is determined by demagnetiz-
ing field configurations and so depends on the geometry of the
system [Figs. 3(c) and 3(d)]. For the system with the flat bottom
surface (i.e., h1 = h2 + h3) if h2 is smaller than the exchange
length (h � 5 nm) the skyrmion has the helicity γ = 0,π

(pure Néel type). For the thicker h2 the helicity becomes
nonuniform in the vertical direction [Fig. 3(d)]. The same

situation is observed for the skyrmion in the blind hole. So by
varying the geometry of the system it is possible to obtain the
skyrmions with the different helicity numbers. Moreover, our
simulations demonstrate that the skyrmion can be manipulated
by applying the uniform external magnetic field. If the applied
field is directed against its core magnetization it begins to
shrink, vice versa if the field is the same direction and the
skyrmion core widens [Fig. 5(c)]. This takes place until it does
not lose its stability. The widening is accompanied by a change
in its skyrmion helicity [Fig. 2(b)]. It is necessary to note that
the micromagnetic simulations confirm the possibility of the
skyrmion stabilization in the blind hole or on the stub in the
wide range of the material parameters (mentioned above) with
proper geometrical configuration of the system.

At the second stage of our study we investigate the possibil-
ity of the skyrmion lattice formation in the initially uniformly
magnetized system by applying an external magnetic field. The
condition of numerical simulations is slightly changed in this
case. The calculation is done for a 640 × 640 × 30 nm piece of
the 30 nm thick magnetic film which contains 23 hexagonally
arranged blind holes. Their diameter and depth are 60 nm and
25 nm, and the lattice period is 110 nm. We especially do not
use the periodical boundary conditions to take into account
possible boundary effects which for sure can take place in the
real experiment. Also we slightly (2.5 nm) shift the array of the
blind holes relative to the center of the system to reduce its sym-
metry. The used material parameters are Ms = 9 × 105 A/m,
A = 10−11 J/m, and Ku = 7 × 106J/m3. Starting with the
uniformly perpendicularly magnetized system we calculate the
magnetization hysteresis loop. It is presented in Fig. 4 in detail.
The magnetization process takes place as follows. If the field
is directed opposite to the initial magnetization of the system it
remains stable till μ0H = 164 mT [point D in Figs. 4(a)–4(c)].
After that the reversal of the first blind hole takes place and the
skyrmion is formed in it. Due to the effective antiferromagnetic
character of the magnetostatic interaction between skyrmion
cores an additional field is necessary to reverse the second
blind hole and initialize skyrmion in it. So the magnetization
process receives step-by-step character and the magnetization
curve has a form of devil staircase, when the narrow steps
are between the wider ones [Fig. 4(c)]. The wider steps
correspond to the formation of more symmetrical arrays of
skyrmions [Fig. 4(b)]. This stage of the reversal process ends
at 204 mT with the formation of the dense skyrmion lattice
[Fig. 4(a)]. The lattice stay stable in the wide range of the
fields (−225 mT < μ0H < 500 mT). If the field becomes less
than −225 mT (point B) the reverse process is observed
when the skyrmions one-by-one shrink and disappear. This
part of the curve has also a devil-staircase-like shape. If
the field becomes larger than 500 mT one of the skyrmions
become elliptically unstable, reversed domain spreads through
the whole system, and it becomes uniformly magnetized.
Remarkably it is possible to stop the magnetization process
at any place on the devil staircase between points D and A,
and so create the skyrmion lattice with the desired symmetry
which is stable in the wide field ranges [Fig. 4(b)]. By applying
the appropriate external field it is possible to switch the system
between these states.

Let us estimate the influence of the thermal fluctuations
on the tiny structure of the devil-staircase branch of the
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FIG. 4. The typical magnetization curve of the hexagonal array (the period is 110 nm) of the blind holes (the diameter is 60 nm, the depth
is 25 nm) in 30 nm thick film. (b) Close view of the part of the magnetization curve showing the range of the stability of the skyrmion lattices
with different symmetries. The black circles represents blind holes with reversed magnetization, i.e., skyrmions. (c) The devil-staircase-like
shape of the magnetization curve caused by the effective antiferromagnetic magnetostatic interaction between skyrmions.

magnetization curve. The energy barrier between the different
skyrmion lattices on the same nanostructured matrix which
causes the appearance of the steps on the curve has the
order of �E ∼ μ0�HM, where M ∼ 10−16 A m2 is the
skyrmion core magnetic moment and μ0�H is the width of
the corresponding step on the curve. Comparing this energy
with the energy of the fluctuations at room temperature it is
possible to find some critical value of the step width which
is μ0�Hc ∼ kBT /M ∼ 3 × 10−5 T = 3 × 10−1 Oe. So this
is the minimal width of the step which can be resolved
experimentally at room temperature, more narrow steps will
be blurred due to the thermal fluctuations.

On the other hand, it is interesting to compare kBT

with the energy of the magnetostatic interaction between
the skyrmion cores, which is E = μ0M2/4πr3 in dipole-
dipole approximation. This way it is possible to find the
distance between two skyrmions at which their magnetostatic
interaction begins to exceed the thermal fluctuations. It is about
1 μm. It means that the steps on the magnetization curves
related to the complex skyrmion lattices with the periods less
than this critical distance will be resolved, while the narrow
steps correspond to the complex skyrmion lattices with periods
larger than 1 μm will be blurred at room temperature. Let
as stress one more time that we discuss here the different
skyrmion lattices that can be realized on the same matrix of
the blind holes during the magnetization [Fig. 4(b)]. The nature
of the devil-staircase-like magnetization curves in systems
with effective antiferromagnetic interaction even at nonzero
temperatures is discussed in Ref. [28] in detail.

To explore topological properties of obtained skyrmion
lattice, we calculated the distribution of the local skyrmion
density in the lattice (1) [Fig. 5(b)]. For the different values
of the external magnetic field the maximal skyrmion density
is changed from φ = −6.63 nm−2 at μ0H = 500 mT to
φ = −8.9 nm−2 at μ0H = −255 mT as the skyrmion changes
its diameter. Nevertheless, the skyrmion number calculated
as the integral of the skyrmion density over the lattice cell
is always equal to −1 between B and C points of the
magnetization curve. Evidently for the opposite direction of
the cores (between B̃ and C̃ points) the skyrmion number

is equal to 1. In principal the skyrmions are observed while
magnetizing the lattice of the blind holes for the different
values of the material parameters within the range mentioned
above as usual for perpendicular magnetic media. But for the
arbitrary material parameters the part of the blind hole turned
to be in the C states. Nevertheless, it is possible to choose such
material parameters or system geometry when C states become
unstable according to its transformation in the skyrmion. The
material parameters which are used to calculate magnetization
curves represented in Figs. 4 and 6 satisfy the condition.

FIG. 5. (Color online) (a) Magnetization distribution in the
skyrmion lattice on the blind hole array at H = 0, part of the
simulated system is shown. Dotted lines denote the blind hole edges.
(b) Calculated local skyrmion density φ per unit cell for the same
skyrmion lattice. (c) The dependence of the skyrmion density φ

distribution on the external magnetic field. The red circle denotes
the size of the blind hole, D = 60 nm.
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FIG. 6. (Color online) Left: The typical magnetization curve of the hexagonal array (the period is 120 nm) of the cylindrical stubs (the
diameter is 60 nm, the height is 25 nm) on the surface of the 5 nm thick film. Pairs of the capital letters A-A′, B-B′, C-C′, etc. indicate the
ranges of the stability of the skyrmion lattices denoted by the same lowercase letters a, b, c which are schematically represented in the middle.
Middle: Some (the most symmetrical) of the possible skyrmion lattices consequently arising during the magnetization of the array of the stubs.
The black color (for the stubs) and gray color (for the film) denote the up-directed magnetization, the white is for down-magnetized regions
of the system. The arrows indicate the possible transitions between the states caused by applied external field. Right: The devil-staircase-like
shape of the magnetization curve between B′ and E′ is presented.

The magnetization curve of hexagonal lattice of the
stabs (D = 60 nm, h3 = 25 nm, period 120 nm) on the
600 × 600 nm and 5 nm thick pedestal is shown in Fig. 6.
In this case the magnetization reversal begins in the thin
base film. At μ0H = 318 mT the nucleus with the reversed
magnetization appears and the reversed domain spread through
all the pedestal. Even so the stubs keep their magnetization
unreversed at this field value. So the formation of the dense
hexagonal array (state “b” in the scheme in Fig. 6) occurs.
This skyrmion lattice remains stable in the wide range of the
external field values (points B and B′ in Fig. 6). At the field
value larger than 704 mT the dense skyrmion lattice become
unstable and successive reversal of the stubs was observed with
the further increase of the external field. The reversal ends at
786 mT (point E′). This part of the magnetization curve has
the devil-staircase-like shape similar to that shown in Fig. 4(c)
for the blind hole lattice. During the reversal the system passes
through the sequence of states which have different numbers
of skyrmions. Some of the most symmetric states are presented
in Fig. 6. By applying the uniform external field it is possible
to obtain different stable skyrmion lattices and also switch the
system between these stable states.

To finish with we should make some remarks.
(1) We checked and made sure that the exact cylindrical

shape of the blind hole or stub is not necessary for skyrmion
stabilization. The elliptical or conical shape is also suitable, as
the stabilization mechanisms work in the same way in these
cases.

(2) It is well known that the coercivity of the perpendicular
magnetic films can be significantly less than anisotropy.

The magnetization reversal can start with the appearance of
the reversed nucleus in the “weak” place in this case. Our
calculations demonstrate that the bottom of the blind hole or
pedestal in the lattice of stabs is naturally such a weak place
(due to the specifics of the demagnetizing field distribution in
the system), where the nucleus appears at fist. The existence
of the additional weak places such as related to polycrystal
structure of the initial film can shift the specific fields of the
magnetization loop of the system but will not significantly
change.

(3) Evidently if we apply an electric current to the system
it will have the tendency to flow in the thicker parts of the
patterned film. Therefore, it will avoid the blind hole bottoms
and vise versa will be concentrated in the stubs. So the unique
transport effects related to skyrmions will be more pronounced
in the lattice of the stubs than in the lattice of the blind holes.

So we suggest the method for creating a 2D artificial
lattice of magnetic skyrmions by lithographic patterning of
the perpendicular magnetic film. Wherein the skyrmion charge
density can be more than 100/μm2. By numerical simulations
we demonstrate how such a lattice can be formed in the
simple process of the magnetization in the uniform external
field.
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