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a b s t r a c t

The problem of the skyrmion stability in the magnetic film with perpendicular anisotropy inside the area
with the changed material parameters is considered. The solution describing the conditions of such
stabilization in the absence of Dzyaloshinskii–Moriya interaction is obtained analytically. The easy
method of nanomodification of ordinary magnetic perpendicular media such as Co,Fe/Pt,Pd,Ru super-
lattices allowing the formation of the dense enough (with the period less than 100 nm) skyrmion lattices
is suggested. By micromagnetic simulations it is shown that the skyrmion lattices can be initialized in the
system by simple magnetization in the uniform external magnetic field.

& 2015 Published by Elsevier B.V.
1. Introduction

Although soliton-like solutions for magnetization distribution
carrying topological charge in magnetic materials are well known
since the late 1970s [1,2], the new rise of the interest for them is
caused by experimental observation of such structures in the
chiral magnets [3–5] where they can be stable without the assis-
tance of an external magnetic field [6]. Since these pioneering
work such magnetic structures are usually referred to as “mag-
netic skyrmions”. The special attention to the magnetic skyrmions
is caused by their unusual spin-electronic properties, such as the
topological Hall effect [7–10], current-driven motion in ultra-low
currents [11,12] accompanied by skyrmion Hall effect [13], flex-
omagnetoelectric effects [14] or novel dynamic spin-wave prop-
erties [15,16] which can be exploited for high-dense spin-based
solid-state information storage and processing combined in the
same device. The skyrmion lattice is stabilized by Dzyaloshinskii–
Moriya (DM) interaction [17–19] in some non-centrosymmetric
magnetic materials. This limits the pool of prospective materials
for the design of the skyrmion lattices; moreover the relativistic
DM interaction is commonly weak so the magnetic skyrmion lat-
tice can be stable within a narrow temperature-field region (see
Table 1 from Ref. [20]) which additionally hinders their applica-
tion. The search of the opportunities for the use of ordinary
magnetic materials to create the skyrmion lattices will help to
overcome these obstacles.
Microstructures, RAS, Nizhny
In principle well-known magnetic bubble domains (MBD)
which can be stabilized in YIG by applying external magnetic field
have the topology of the magnetic skyrmions [20,21]. Nevertheless
the nonconductive nature of this material makes it unsuitable to
exploit the unique transport effects connected with the magnetic
skyrmions. Some recent works suggest new approaches to stabi-
lization of the skyrmion lattices in the materials without the DM
interaction by different types of nanopatterning. The first idea is to
place Co particles on the surface of the CoPt film with perpendi-
cular anisotropy. In this case the exchange interaction between the
magnetic vortex within the Co particle and magnetization in the
CoPt film stabilizes skyrmion-like magnetization distribution in
the film below the magnetic vortices. This approach was corro-
borated by micromagnetic simulation [22] and even found the
experimental verification [23,24]. Nevertheless to initialize the
skyrmion lattice in the sample this method involves sophisticated
manipulations with the external magnetic field while the sky-
rmion charge density achieved in the experiment (and demon-
strated in simulation) is less than 1 m 2μ − . Another suggested
method is based on the idea of the spatial modulation of the
magnetic film thickness [25,26]. The micromagnetic simulations
demonstrate the possibility of creation of dense enough (more
than 100 m 2μ − ) skyrmion lattices in the nanopatterned magnetic
films with perpendicular anisotropy, the skyrmions can be in-
itialized by the simple magnetizing of the sample in the uniform
external field. The idea is that by the varying the thickness of the
film the domain wall will have the different energy in the different
regions and this can prevent MBD (i.e. magnetic skyrmion) col-
lapse or runout.

In this paper we suggest the realization of the same idea by an
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alternative method. Besides the spatial modulating of the film
thickness it is possible to spatially modulate material parameters
of the film to alter the domain wall energy. Indeed at the zero
external field the MBD (topologically it is a magnetic skyrmion)
have the tendency to runout. But if MBD is initially in the local
region with the anisotropy value smaller than the anisotropy in
the surrounding area the increase of the domain wall energy
density (as A K4i i iσ = , K is anisotropy and A is exchange constant)
will prevent the MBD runout outside the region with lesser ani-
sotropy. Instead of the runout the MBD experienced squeeze if the
thickness of the perpendicular magnetic films is less than some
critical value [27]. In this case the local increase of the anisotropy
value in the middle of the bubble domain can prevent its collapse
due to the same mechanism. How is it possible to locally change
the material parameters of the magnetic film? It is possible in the
case of the superlattices of the alternating magnetic (Co and Fe)
and nonmagnetic (Pt, Pd, Ru, Ir, Cu, and Au) layers that have per-
pendicular magnetic anisotropy [28]. Depending on the composi-
tion and the layer thicknesses the material parameters of the
magnetic perpendicular medium are varied within the certain
limits: M 5 10 18 10 A/ms

5 5= × – × , K 4 10 4 10 J/mu
5 6 3= × – × , and

A 10 2 10 J/m12 11= – ×− − (it is the saturated magnetization, uniaxial
anisotropy and exchange coefficient) [28–33]. In the case of the
sufficiently thin magnetic layers the interlayer surface anisotropy
is high enough to overcome the demagnetizing fields so the
structure obtains the effective perpendicular easy axis anisotropy.
The anisotropy coefficient depends on the interlayer surface
roughness and so can be changed by Heþ [34,35] or Gaþ [36] ions
irradiation. Depending on the irradiation dose the value of the
effective perpendicular anisotropy can be reduced or even be-
comes the easy-plane. The local change of the anisotropy coeffi-
cient can be achieved by use of the different masks with the holes
of the necessary diameter or by the direct irradiation by the fo-
cused ion beams, the spatial resolution of such technique is up to
1 nm [37]. This is more than enough to form the periodic struc-
tures as represented in Fig. 1a, with the lattice period less than
100 nm and the irradiated areas as small as 50 nm in diameter. In
the same way it is possible to reduce the anisotropy of the film
leaving the anisotropy unchanged in the periodically arranged
circular areas. In this case K K1 0> .

The aim of the presented work is to answer two questions:
(1) Is it possible to stabilize the skyrmion (skyrmion lattice) by
Fig. 1. (a) The geometry of suggested nanomodification: h is the film thickness, 2r0 is the
density of the domain wall energy profile in the system. (c) The x dependence of the dϵ
(orange) is for 0.641λ = (MBD is stable), the lower line having peak (red) is for 0.681λ = (
the MBD stability. The monotonous lines (green and blue) are for the uniform magnetic fi
the d dx/ϵ for the system with x 250 = , 1.84Δ = and 1.761λ = . The lower line having val

1.741λ = (MBD is unstable). The monotonous lines (green and blue) are for the uniform m
color in this figure caption, the reader is referred to the web version of this paper.)
such spatial modulation of the anisotropy value? (2) If “yes”,
whether there is an easy way to initialize the skyrmion lattice in
such periodically modulated film? The positive answers will open
new ways to experimental realization of the skyrmion lattices in
the ordinary magnetic materials at room temperature.
2. Analytical approach to the problem of the skyrmion stabi-
lity in the area with changed material parameters

Here we consider the problem of the MBD stability in the in-
finite magnetic film which have the cylindrical area with the dif-
ferent material parameters as illustrated in Fig. 1a and b. The re-
gion 0 (periphery) represents the homogeneous material char-
acterized by the parameters of magnetic anisotropy K0 and ex-
change energy A0 while the region 1 (circular central part) defined
from r¼0 to r r0= represents the area with changed values of the
material parameters K1 and A1. The easy direction of the aniso-
tropy is everywhere perpendicular to the film. It is assumed that
the saturation magnetization Ms is similar for the both regions.
The film thickness is equal to h. Consider a cylindrical bubble of
radius r where center coincides with the center of the coordinates.
The total energy of the system is

W W W W 1H D= + + ( )σ

The first term Ws is the domain wall energy of the MBD, the
second termWH is the interactionwith the external magnetic field,
the last one is the demagnetizing energy WD of a single cylindrical
domain in an infinite film. The problem is very similar to the well-
known problem of the MBD stability in the homogeneous mag-
netic film, but one should take into account now that the domain
wall energy per unit area depends on the domain wall position:

A K4i i iσ = , where Ai and Ki are the exchange and the anisotropy
constants of the corresponding region. Besides let us take into
account two facts: (1) in the real system the boundary between
the regions with the different material parameters will be blurred
and (2) the domain wall has its own thickness which is equal to

A K2 / 5 10 nmi iπ ∼ – . So while domain wall shifts from the region
0 to region 1 it changes its energy fluently. In the frameworks of
our model we use the following dependence of the domain wall
energy density on its position:
diameter of the area with modified material parameters, and a is the period. (b) The
dx/ for the system with x 100 = , 0.85Δ = and 0.70λ = . The upper line having peak
MBD is unstable). The thickest line (violet, 0.661λ = ) corresponds to the boundary of
lm with 0.641 0λ λ= = and 0.71 0λ λ= = (MBD is unstable). (d) The x dependence of
ley (orange) is for 1.711λ = (MBD is stable), the upper line having valley (red) is for
agnetic film with 1 0λ λ= (MBD is unstable). (For interpretation of the references to
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The phenomenological parameter δ characterizes the spatial
scale where the domain wall density changed its value. Evidently it
cannot be less than the domain wall thickness. The equilibrium
radius of the domain is to be determined by the conditions
dE dr/ 0= , dE dr2/ 02 = . We will introduce the dimensionless en-
ergy, magnetic field, radius and characteristic length λ for sim-
plicity:

W M h/16 , 3s
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The dimensionless characteristic length depends on the di-
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Here index i denotes corresponding region, x r h/0 0= and
h/Δ δ= . So the dependence of the bubble domain energy on its

radius takes the form of

x x x x x/2 7D
2λϵ( ) = ( ) + + ϵ ( ) ( )

Now let us find the derivatives of each term in this expression
on x. For the first term it is
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The derivative of the second term is evident. For the magne-
tostatic energy term we can use the known solution for the
magnetostatic energy of the MBD in the uniform film as we as-
sume saturation magnetization to be equal in both regions of the
film. The necessary derivative of the magnetostatic energy of the
MBD was obtained by Thiele [38,39] in the form of complete el-
liptic integral of the second kind. Instead of it we will use here the
easy rational function

d x
dx

x
x1 3 /2 9

Dϵ ( )
= −

+ ( )

suggested in [40] which demonstrates very good match with the
exact Thiele's expression but much more suitable to obtain
transparent final formulas. The calculated typical curves of d dx/ϵ
for the possible system parameters are represented in Fig. 1c and d
for the zero external field. We do not derive the expression for
d dx/2 2ϵ , nevertheless its sign can be easily determined from the
plotted graphs for of d dx/ϵ .

It is well known that an MBD is unstable at the zero external
field in homogenous film. Depending on the film thickness and
material parameters it expands or vice versa has a tendency to
squeeze and collapses. The first situation is represented in Fig. 1c.
The dimensionless values used for the curves calculation corres-
ponds to the following dimensional geometrical h¼10 nm,
r0¼100 nm, δ¼8.5 nm and material M 9.5 10 A/ms

5= × ,
A A 5 10 J/m1 0

12= = × − parameters. The different curves of d dx/ϵ
on the graph correspond to different anisotropy values. Two
monotonous curves are plotted for uniform films with
K 8 10 J/m0

5 3= × (upper, blue) and K 6.5 10 J/m0
5 3= × (lower,

green). d dx/ 0ϵ < in these cases corresponds to runout instability
of the MBD which is usual for the thick uniform films at zero
external field. In the case when the λ1 value (or anisotropy K1, in
the term of dimensional parameters) inside the central area de-
creases in comparison with the characteristic length or anisotropy
of the rest of the film the situation changes – the local maximum
appears on the d dx/ϵ line. If this difference in the material para-
meters is not large the maximum do not reach the value of 0 and
the MBD remains unstable (red line, K 8 10 J/m0

5 3= × ,
K 7.5 10 J/m1

5 3= × ). But with the further decrease of the K1 value
the maximum of the d dx/ϵ grows up and finally reaches 0 (thick
violet line K 8 10 J/m0

5 3= × , K 6.97 10 J/m1
5 3= × ). At this moment

the MDB becomes stable and stay stable with the further decrease
of K1 in comparison with K0. For example the orange line corre-
sponded to K 6.5 10 J/m0

5 3= × cross the 0 value level twice. So the
MBD can have two equilibrium radii x x1,2= in this case, d dx/ 0ϵ =
for the both points. Nevertheless it is evident from the graph that
the less value x x1= corresponds to the condition d dx/ 02 2ϵ > as
d dx/ 0ϵ grows up in this point. So this equilibrium radius of the
MBD is stable. The large value x2 corresponds to the unstable MBD
as d dx/ 02 2ϵ < in this point. The arrows in Fig. 1c denote the
duration of the MBD radius changing while it relaxes to the stable
value. The external magnetic field directed against MBD magne-
tization gives the positive addition x to the d dx/ϵ increasing the
stability of the MBD; the same way the magnetic field directed
along the MBD magnetization decreases its stability.

Fig. 1d demonstrates the dependencies of d dx/ϵ on the MBD
radius for the “thin” film when an MBD collapses in the homo-
genous film at the zero external field (d dx/ 0ϵ > for 1 0λ λ= ). All the
dimensional parameters are the same like in the previous case
excluding film thickness h which is 4 nm instead of 10 nm.
Nevertheless this leads to renormalization of all other di-
mensionless parameters like x0. Δ and λi and qualitatively changed
the behavior of the system. To avoid the MBD collapse it is ne-
cessary for λ1 (or correspondingly K1) to exceed λ0 (or corre-
spondingly K0) in this case. If this difference is enough to decrease
d dx/ϵ below 0 at the boundary, the MBD becomes stable. Let us
remember that the graphs are plotted for zero external field.
Evidently the magnetic field acts in this case in the opposite way
in comparison with the “thick” film case. The field directed along
MBD magnetization improves the conditions for its stabilization,
the magnetic field directed in the opposite direction decreases the
MBD stability.

The condition

max d dx/ 0 10( ϵ ) = ( )

which is fulfilled for thick violet line in Fig. 1c determines the
boundary of the MBD stability. Evidently d dx/ 02 2ϵ = is the point
where the first derivative has its maximum. The condition (10)
links the geometrical and material parameters of the system and
allow to obtain the MBD stability diagram. Due to the fact that
d x dx x/Dϵ ( ) + are the slowly varying functions near x0 at the scale
Δ in comparison with d x dx/ϵ ( )σ the position of d dx/ϵ maximum
practically coincides with x0. This reason allows us to reduce the
condition (10) to the d dx/ 0x0

ϵ | = which has a form of
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It is easy now to obtain expressions for the critical values of the
material and geometrical parameters of the system which de-
termines the stability boundaries of MBD, for example:
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Fig. 2. The analytically calculated boundaries of the regions of the stable existence
of the MBD at the zero external field plotted in different axes. The geometrical
parameters of the system are the following: h¼10 nm, 10 nmδ = ,
M 9.5 10 A/ms

5= × , A A 5 10 J/m1 0
12= = × − , and K 8 10 J/m0

5 3= × for the right
graph. The dotted line denotes the value of K M /2s1 0

2μ= which corresponded to
effective easy plain anisotropy. The results of the micromagnetic simulations for
the systems with the same material parameters are represented by symbols. The
results of micromagnetic calculations for R 200 nm0 = are not present on the upper
graph.
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The stability diagrams plotted in the dimensional axes are re-
presented in Fig. 2 for the case of the “thick” film. The same dia-
grams can be easily plotted for the case of the “thin” film using the
same condition.

So our calculations demonstrate that it is possible to stabilize
MBD in the magnetic film which have the material parameters
with the values usual for the ordinary magnetic materials with
perpendicular magnetic anisotropy by appropriate spatial mod-
ulations of the perpendicular anisotropy value. The Dzya-
loshinskii–Moriya interaction is not necessary in this case, the
stabilization can be achieved at zero external field. The diameter of
the stable MBD can be small enough (up to 50 nm) producing the
corresponding high skyrmion charge density in the system.
3. Numerical simulations

So we analytically solve the problem of the skyrmion stability
in the circular area with modified material parameters for the case
when the anisotropy of the mentioned area is still easy axis. We
corroborate our analytical approach with micromagnetic simula-
tions utilizing the OOMMF code [41]. This code is based on a nu-
merical solution of the system of Landau–Lifshitz–Gilbert (LLG)
equations for the magnetization of the system. The geometry of
the simulated system is the following: the rectangular plate with
the circular area with the changed material parameters in the
center. The width of the plate is within the limits 100–600 nm, its
thickness is 5–15 nm, and the diameter of the central part is 50–
300 nm. The grid size is 2.5�2.5�2.5 nm3. The periodical
boundary conditions in the plane are applied to simulate the
periodical lattice as presented in Fig. 1a. The material parameters
of the system is chosen within the limits discussed in the in-
troduction, K K1 0< .

We check the stability of the MBD placed in the central area
with the reduced anisotropy value for different geometrical and
material parameters. We carry out the simulations for the
600�600 nm plate with the periodical boundary conditions at the
zero external field. The boundaries for the values of the system
parameters when the MBD remains stable and does not exhibit the
expansion from the region with the reduced anisotropy are re-
presented in Fig. 2. The good coincidence of the analytical calcu-
lations and the micromagnetic simulation is evident. The slight
increase for the stability area for simulated system on the dia-
grams is likely caused by the following reason. Analytically we
calculate the infinite film with the MBD alone. It is impossible to
simulate exactly the same system. In the simulations the calcula-
tions are carried for the MBD placed in the center of the finite
plate. In the second case the values of the demagnetizing fields
causing the MBD instability are slightly less.

Besides the verification of the MBD stability the another in-
teresting question is the possibility to initialize magnetic skyrmion
in the initially uniformly magnetized system by applying the ex-
ternal magnetic field. At the first stage we simulated possible
magnetic configurations arising in the system. Let us notice here
that if the anisotropy coefficient is less than the critical value
K M /2c s1 0

2μ= the effective anisotropy (taking into account the de-
magnetizing fields) becomes the “easy plain” type. In our micro-
magnetic simulations we studied both the systemwith K Kc1 > and
with K Kc1 < . A starting point for the calculations is the uniformly
magnetized film ( M Mz s= − ) and then the system relaxes in a
stationary state. We add very small random anisotropy
(K K0.0001r 0= × ) to introduce some inhomogeneity in the system
and to initialize possible instability. The external magnetic field is
equal to 0. Depending on the geometrical and material parameters
the system stays stable in the uniformly magnetized state, relaxes
to the labyrinth domain structure or forms one of the localized
states represented in Fig. 3. There are the schematic pictures of the
magnetization configuration as well as the distribution of the
skyrmion charge density in the corresponding state defined as [8]



Fig. 3. The possible localized magnetization configurations existing in the magnetic film with the perpendicular anisotropy in the cylindrical area with the reduced ani-
sotropy value: (a) SD – single domain, (b) CV – co-directional vortex, (c) OV – opposite magnetic vortex, (d) ON – onion, (e) CD – circular domain, and (f) MB – magnetic
bubble. The top row is the scheme of the magnetization distribution in the film plane. Points (red) and crosses (blue) denote the magnetic moments directed perpendicular
to the film plain in the opposite directions. The bottom row is the scheme of the topological charge density distribution for the corresponding states. The grid size is
1 1 1 nm3× × for the calculations in this case. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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n M r M r/= ( ) | ( )| is the orientation of the magnetization. For the
reference we named this states as “single domain” (SD – Fig. 3a),
“co-directional vortex” (CV – Fig. 3b), “opposite magnetic vortex
(OV – Fig. 3c), “onion” (ON – Fig. 3d), “circular domain” (CD –

Fig. 3e) and “magnetic bubble” (MB – Fig. 3f). The first three states
(SD, CV and OV) take place when the effective anisotropy of the
central circular area is the easy plain, while the last three ones can
be realized in the case when the anisotropy of the central circular
area is still effectively easy axis.

All these states have the non-coplanar magnetization dis-
tribution, i.e. their local density of the skyrmion charge is not
equal to zero. Nevertheless if one integrates the skyrmion charge
density over the system the result will be different for different
states. xy dx dy 0∫ ϕ( ) = for SD, CV, ON and CD, so they do not carry
topological charge. Vice versa OV and MB have the integral sky-
rmion charge equal to 1, so topologically they are the skyrmions. In
Fig. 4. The states appeared in the nanomodified film at the zero external field after rel
geometrical parameters are the same for the left and right diagrams. System size is 200
material parameters of the film are M 8.5 10 A/ms

5= × , K 8 10 J/m0
5 3= × , A 5 10 1= × −

represent the values of the diameter and anisotropy constant of the modified cylindrical
in Fig. 3. Gray color denotes the states carrying the topological charge.
these two states the magnetization continuously changes from up
direction in the center to down at the periphery in all radial di-
rections away from the center and wraps a sphere pointing in all
directions as it usual for skyrmion. In the case of the MB the
skyrmion charge density is concentrated near domain wall, while
in the case of the OV the topological charge is divided equally
between the vortex core (1/2) and the wall between the vortex
and the periphery (also 1/2). In the CV the topological charge
carried by vortex core (�1/2) is totally compensated by the to-
pological charge carried by the wall between the vortex and per-
iphery (1/2), so it can be continuously deformed to the uniform
state.

The realization of the particular state after the relaxation from
the uniformly magnetized state depends on the geometrical and
material parameters of the system. Two examples of the possible
“phase diagram” for the systems with different material para-
meters are represented in Fig. 4. They demonstrate that the to-
pologically charged states can be distinguished by the simple de-
magnetizing from the uniformly saturated state for the wide range
axation from the saturated state (the result of the micromagnetic simulation). The
�200�10 nm3 with the periodical boundary conditions in the XY plane. Left: the

J/m2 . Right: M 1.35 10 A/ms
6= × , K 13 10 J/m0

5 3= × , A 2 10 J/m11= × − . The axes
area in the center of the simulated cell. The magnetic states correspond to the states



Fig. 5. The possible shapes of the hysteresis curves for the 200 nm�200 nm piece of the 10 nm thick magnetic film ( M 9.5 10 A/ms
5= × , A A 5 10 J/m1 0

12= = × − ,
K 8 10 J/m0

5 3= × ) with the round 100 nm in diameter area with the modified value of anisotropy K1. The periodical boundary conditions are applied to simulate the
periodical lattice. (a) K 0 J/m1

3= , (b) K 3 10 J/m1
5 3= × , (c) K 5 10 J/m1

5 3= × , (d) K 5.5 10 J/m1
5 3= × . The thick red line is the branch of the hysteresis curve corresponding to

the skyrmion formation. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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of the initial material parameters of the magnetic film in the case
of the proper nanomodification. The transformation of OV state to
MB state takes place fluently with the increase of K1 and accom-
panied by a gradual expansion of the vortex core. The same gra-
dual transitions are between SD and ON states as well as between
CV and CD states. Therefore the boundaries between them are not
denoted in Fig. 4. Arbitrarily the value K M /2c s1 0

2μ= which
corresponds to the effective anisotropy change from the easy plain
to the easy axes can be considered at such boundary.

The application of the uniform external magnetic film can
cause transitions between the localized states. So it will allow to
prepare the topologically charged states for wider ranges of the
material and geometrical parameters of the system. For example
Fig. 5 represents numerically calculated magnetization hysteresis
curves for a 200 nm�200 nm piece of the 10 nm thick magnetic
film with periodical boundary condition. The following material
parameters are used: M 9.5 10 A/ms

5= × , A A 5 10 J/m1 0
12= = × − ,

and K 8 10 J/m0
5 3= × . The cylindrical 100 nm diameter area with

the modified value of anisotropy K1 is situated in the center of the
cell. According the results represented in Fig. 4 (left) in the case of
the simple demagnetizing from the saturated state the formation
of CV or CD states takes place for these values of the system
parameters. These states do not carry topological charge but by
applying uniform external field they can be transformed into the
topologically charged OV and MB states which are the skyrmions.
Depending on the K1 value four possible scenarios of the magne-
tizing process are possible. If K0 0.45 10 J/m1

5 3≤ ≲ × (Fig. 5a) at
some critical field the reverse of the CV core magnetization takes
place and it becomes OV state which still stays stable if the field is
reduced to zero. Vice versa with the further increase of the ex-
ternal field OV become unstable and the labyrinth domain struc-
ture formes. In the case of K0.45 10 J/m 3.6 10 J/m5 3

1
5 3× ≤ ≲ × the

increase of the magnetic field causes the developing of the la-
byrinth domain structure in the surrounding film before the re-
versal of the CV core in the central area takes place. The further
increase of the magnetic field leads to the widening of the re-
versed domains, and finally the process ends with the total re-
versal of the film with the exception of the central area where the
magnetic vortex still takes place. As its core is still unreversed and
now it is directed against the film magnetization this state is to-
pologically charged OV. It stays stable after reducing the field to
zero, the increase of the field leads to the reversal of the OV core
and the system again came to uncharged CV state. For

K4.4 10 J/m 5.4 10 J/m5 3
1

5 3× ≤ ≲ × (Fig. 5c) the formation of the
CD is observed with the following reversal of its core and trans-
formation to the topologically charged MB state. The last scenario
is observed for K5.4 10 J/m 5.6 10 J/m5 3

1
5 3× ≤ ≲ × (Fig. 5d). In this

case the increase of the external field leads to the direct
conversion of the uniform state which is stable at H¼0 (see Fig. 4a
also) to topologically charged MB state.

In most of our calculations we simulate the periodical lattice by
one cell with the periodical boundary conditions. This method
significantly increases the calculation rate but does not allow to
resolve the magnetization structures which have the period larger
than the period of nanomodification. The complex skyrmion lat-
tices can appear due to the effective antiferromagnetic magneto-
static interactions between the localized states [25]. This interac-
tion is especially noticeable in the case of MB as their magnetic
moment is significantly larger than the magnetic moment of the
OV due to the larger volume of the core which is magnetized
perpendicularly. To understand how does the inter-cell interaction
influence the behavior of the system we carry out simulation of
the 800�800 nm piece of the 10 nm thick magnetic film which
contains 16 cylindrical areas arranged in the square lattice. The
periodical boundary condition is also applied. The material para-
meters are the same as presented above. The general form of the
hysteresis is the same as represented in Fig. 5d. The only evident
difference is the appearance of the tiny devil-staircase structure
(Fig. 5d, inset) on the magnetization curve branch corresponding
to the process of the one-by-one MB appearing in the system.
During this process the skyrmion lattices with different symme-
tries successively appear in the system until the dense skyrmion
lattice is finally formed. All of them are stable at the zero magnetic
field. The nature of the devil-staircase-like magnetization curves
in systems with effective antiferromagnetic interaction even at
nonzero temperatures is discussed in Refs. [25,42] in details.
4. Conclusions

So we analytically solve the problem about the stability of the
magnetic skyrmion in the thin magnetic film with the easy axis
anisotropy in the absence of the DMI inside the area with the
changed material parameters. This allows us to suggest the
method for creating two-dimensional artificial lattice of magnetic
skyrmions by spatial nanomodification of the easy-axis magnetic
film. The calculations demonstrate that the appropriate material
parameters of the initial magnetic film can be within the wide
ranges which correspond to the known parameters of Co/Pt, Co/Pd,
Co/Ru, Fe/Pd and the similar ferromagnetic/nonmagnetic super-
lattices. Wherein the achieved skyrmion charge density can be
more than 100 per μm2. The derived expressions allow one to
easily estimate the parameters (geometrical and material) of the
nanomodification which is necessary to obtain the stable skyrmion
lattice in the real experiment. Besides by numerical micro-
magnetic simulations we demonstrate that the skyrmion lattices
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can be initialized in the system in the simple process of the
magnetization in the uniform external field. It is well known that
the coercivity of the perpendicular magnetic films can be sig-
nificantly less than anisotropy. The magnetization reversal can
start with appearance of the reversed nucleus in the “weak” place
in this case. As for micromagnetic simulation this effect can be
achieved by introducing some additional small random anisotropy.
This random anisotropy can have larger value inside the modified
area that is in good correspondence with the experimental data.
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